James F. Haw

Find an error

Name: Haw, James F.
Organization: University of Southern California , USA
Department: Department of Chemistry
Title: (PhD)

TOPICS

Co-reporter:Ann J. Liang ; Raluca Craciun ; Mingyang Chen ; T. Glenn Kelly ; Philip W. Kletnieks ; James F. Haw ; David A. Dixon ;Bruce C. Gates
Journal of the American Chemical Society 2009 Volume 131(Issue 24) pp:8460-8473
Publication Date(Web):June 1, 2009
DOI:10.1021/ja900041n
Structures of zeolite-anchored organorhodium complexes undergoing conversions with gas-phase reactants were characterized by infrared spectra bolstered by calculations with density functional theory and analysis of the gas-phase products. Structurally well-defined zeolite-supported rhodium diethylene complexes were synthesized by chemisorption of Rh(C2H4)2(acac) (acac = CH3COCHCOCH3) on dealuminated Y zeolite, being anchored by two Rh−O bonds, as shown by extended X-ray absorption fine structure (EXAFS) spectroscopy. In contrast to the nonuniformity of metal complexes anchored to metal oxides, the near uniformity of the zeolite-supported species allowed precise determination of their chemistry, including the role of the support as a ligand. The anchored rhodium diethylene complex underwent facile, reversible ligand exchange with deuterated ethylene at 298 K, and ethylene ligands were hydrogenated by reverse spillover of hydrogen from support hydroxyl groups. The supported complexes reacted with CO to form rhodium gem-dicarbonyls, which, in the presence of ethylene, gave rhodium monocarbonyls. The facile removal of ethylene ligands from the complex in H2−N2 mixtures created coordinatively unsaturated rhodium complexes; the coordinative unsaturation was stabilized by the site isolation of the complexes, allowing reaction with N2 to form rhodium complexes with one and with two N2 ligands. The results also provide evidence of a new rhodium monohydride species incorporating a C2H4 ligand.
Co-reporter:DavidM. McCann;David Lesthaeghe Dr.Ir.;PhilipW. Kletnieks;DarrylR. Guenther;MiraJ. Hayman;Veronique VanSpeybroeck Dr.Ir.;Michel Waroquier Dr.;JamesF. Haw Dr.
Angewandte Chemie International Edition 2008 Volume 47( Issue 28) pp:
Publication Date(Web):
DOI:10.1002/anie.200890132
Co-reporter:DavidM. McCann;David Lesthaeghe Dr.Ir.;PhilipW. Kletnieks;DarrylR. Guenther;MiraJ. Hayman;Veronique VanSpeybroeck Dr.Ir.;Michel Waroquier Dr.;JamesF. Haw Dr.
Angewandte Chemie 2008 Volume 120( Issue 28) pp:5257-5260
Publication Date(Web):
DOI:10.1002/ange.200705453
Co-reporter:DavidM. McCann;David Lesthaeghe Dr.Ir.;PhilipW. Kletnieks;DarrylR. Guenther;MiraJ. Hayman;Veronique VanSpeybroeck Dr.Ir.;Michel Waroquier Dr.;JamesF. Haw Dr.
Angewandte Chemie 2008 Volume 120( Issue 28) pp:
Publication Date(Web):
DOI:10.1002/ange.200890186
Co-reporter:DavidM. McCann;David Lesthaeghe Dr.Ir.;PhilipW. Kletnieks;DarrylR. Guenther;MiraJ. Hayman;Veronique VanSpeybroeck Dr.Ir.;Michel Waroquier Dr.;JamesF. Haw Dr.
Angewandte Chemie International Edition 2008 Volume 47( Issue 28) pp:5179-5182
Publication Date(Web):
DOI:10.1002/anie.200705453
Co-reporter:Philip W. Kletnieks;Ann J. Liang;Raluca Craciun;Justin O. Ehresmann Dr.;David M. Marcus Dr.;Vinesh A. Bhirud Dr.;Meghan M. Klaric;Mira J. Hayman;Darryl R. Guenther;Olesya P. Bagatchenko;David A. Dixon ;Bruce C. Gates ;James F. Haw
Chemistry - A European Journal 2007 Volume 13(Issue 26) pp:
Publication Date(Web):8 AUG 2007
DOI:10.1002/chem.200700721

By anchoring metal complexes to supports, researchers have attempted to combine the high activity and selectivity of molecular homogeneous catalysis with the ease of separation and lack of corrosion of heterogeneous catalysis. However, the intrinsic nonuniformity of supports has limited attempts to make supported catalysts truly uniform. We report the synthesis and performance of such a catalyst, made from [Rh(C2H4)2(CH3COCHCOCH3)] and a crystalline support, dealuminated Y zeolite, giving {Rh(C2H4)2} groups anchored by bonds to two zeolite oxygen ions, with the structure determined by extended X-ray absorption fine structure (EXAFS) spectroscopy and the uniformity of the supported complex demonstrated by 13C NMR spectroscopy. When the ethylene ligands are replaced by acetylene, catalytic cyclotrimerization to benzene ensues. Characterizing the working catalyst, we observed evidence of intermediates in the catalytic cycle by NMR spectroscopy. Calculations at the level of density functional theory confirmed the structure of the as-synthesized supported metal complex determined by EXAFS spectroscopy. With this structure as an anchor, we used the computational results to elucidate the catalytic cycle (including transition states), finding results in agreement with the NMR spectra.

Co-reporter:Philip W. Kletnieks;Ann J. Liang;Raluca Craciun;Justin O. Ehresmann Dr.;David M. Marcus Dr.;Vinesh A. Bhirud Dr.;Meghan M. Klaric;Mira J. Hayman;Darryl R. Guenther;Olesya P. Bagatchenko;David A. Dixon ;Bruce C. Gates ;James F. Haw
Chemistry - A European Journal 2007 Volume 13(Issue 26) pp:
Publication Date(Web):29 AUG 2007
DOI:10.1002/chem.200790096

Essentially molecular surface catalysis was demonstrated by D. A. Dixon, B. C. Gates, J. F. Haw et al. and is reported in their Full Paper on page 7294 ff. [Rh(C2H4)2(acac)] reacted with a dealuminated faujasite zeolite to give anchored rhodium complexes that retained their ethylene ligands, with each Rh atom bonded to two zeolite oxygen atoms, as shown by EXAFS, IR, and 13C NMR spectroscopy. Temperature-dependent NMR spectra demonstrated the structural uniformity of the complexes; acetylene reacted with the complexes, replacing ethylene and initiating catalytic acetylene cyclotrimerization.

Co-reporter:David M. Marcus;Mira J. Hayman;Yoni M. Blau;Darryl R. Guenther;Justin O. Ehresmann;Philip W. Kletnieks
Angewandte Chemie 2006 Volume 118(Issue 12) pp:
Publication Date(Web):28 FEB 2006
DOI:10.1002/ange.200503471

Quid pro quo: Der durch feste Säuren katalysierte Wasserstoff-Deuterium-Austausch von Propen wurde bei 573 und 673 K mit einer Reaktionszeit von 3 s untersucht (siehe Schema). Bei niedrigen Partialdrücken und Temperaturen entstand [D5]Propen als Hauptprodukt, vollständige Deuterierung ([D6]Propen) trat nur bei höherer Temperatur und mit dem sauersten Katalysator auf.

Co-reporter:David M. Marcus;Kelly A. McLachlan;Mark A. Wildman;Justin O. Ehresmann;Philip W. Kletnieks
Angewandte Chemie 2006 Volume 118(Issue 19) pp:
Publication Date(Web):29 MAR 2006
DOI:10.1002/ange.200504372

Poolblick bevorzugt: In Einklang mit neuen theoretischen Arbeiten wurden experimentelle Belege erhalten, die die umstrittene Behauptung stützen, dass im katalytischen Methanol-Olefin-Prozess keine direkte mechanistische Kopplung zwischen Methanol und Ethylen auftritt. Die Ergebnisse schließen unter anderem Wege über Carbene und Oxonium-Ylid-Mechanismen aus (siehe Bild) und sprechen für den Kohlenwasserstoffpoolmechanismus.

Co-reporter:Justin O. Ehresmann;Philip W. Kletnieks;Ann Liang;Vinesh A. Bhirud;Olesya P. Bagatchenko;Eric J. Lee;Meghan Klaric;Bruce C. Gates Dr. Dr.
Angewandte Chemie 2006 Volume 118(Issue 4) pp:
Publication Date(Web):27 DEC 2005
DOI:10.1002/ange.200502864

Den Beweis liefert die Analyse! EXAFS-Studien belegen das Vorliegen einkerniger Metalleinheiten in einem Rh+-Katalysator mit zwei austauschbaren Ethylenliganden auf einem Zeolithträger (siehe Bild; Rh braun, C schwarz, Al grau, O rot, Si blau), und sein dynamisches Verhalten wurde in temperaturabhängigen NMR-spektroskopischen Studien untersucht.

Co-reporter:Justin O. Ehresmann;Philip W. Kletnieks;Ann Liang;Vinesh A. Bhirud;Olesya P. Bagatchenko;Eric J. Lee;Meghan Klaric;Bruce C. Gates Dr. Dr.
Angewandte Chemie 2006 Volume 118(Issue 4) pp:
Publication Date(Web):11 JAN 2006
DOI:10.1002/ange.200690012
Co-reporter:Justin O. Ehresmann, Philip W. Kletnieks, Ann Liang, Vinesh A. Bhirud, Olesya P. Bagatchenko, Eric J. Lee, Meghan Klaric, Bruce C. Gates,James F. Haw
Angewandte Chemie International Edition 2006 45(4) pp:521
Publication Date(Web):
DOI:10.1002/anie.200690012
Co-reporter:David M. Marcus, Miranda J. Hayman, Yoni M. Blau, Darryl R. Guenther, Justin O. Ehresmann, Philip W. Kletnieks,James F. Haw
Angewandte Chemie International Edition 2006 45(12) pp:1933-1935
Publication Date(Web):
DOI:10.1002/anie.200503471
Co-reporter:David M. Marcus, Kelly A. McLachlan, Mark A. Wildman, Justin O. Ehresmann, Philip W. Kletnieks,James F. Haw
Angewandte Chemie International Edition 2006 45(19) pp:3133-3136
Publication Date(Web):
DOI:10.1002/anie.200504372
Co-reporter:Justin O. Ehresmann, Philip W. Kletnieks, Ann Liang, Vinesh A. Bhirud, Olesya P. Bagatchenko, Eric J. Lee, Meghan Klaric, Bruce C. Gates,James F. Haw
Angewandte Chemie International Edition 2006 45(4) pp:574-576
Publication Date(Web):
DOI:10.1002/anie.200502864
Co-reporter:P. W. Kletnieks;J. O. Ehresmann;J. B. Nicholas;J. F. Haw
ChemPhysChem 2006 Volume 7(Issue 1) pp:114-116
Publication Date(Web):13 DEC 2005
DOI:10.1002/cphc.200500313

Proton transfer in zeolites: A theoretical and experimental NMR study of cluster formation in HZSM-5 shows that cooperative hydrogen bonding drives the proton-transfer reaction in the case of water (see picture). In comparison, hydrogen sulfide is unable to affect proton transfer at any loading in the zeolite. Thus, the ability of water to transfer the proton from HZSM-5 results from its clustering capability, not its intrinsic proton affinity.

Co-reporter:Weiguo Song
Angewandte Chemie International Edition 2003 Volume 42(Issue 8) pp:
Publication Date(Web):21 FEB 2003
DOI:10.1002/anie.200390234

Active phosphate flotsam: Tetramethylphosphonium cations can be prepared in the cages of HSAPO-34 catalysts from PH3 and methanol by using a ship-in-a-bottle approach (see picture). Calcination of this material leaves phosphate debris in some of the cages, which produces an active methanol-to-olefin catalyst with improved ethylene selectivity.

CYCLOHEXADIENYLIUM, 1,5,6,6-TETRAMETHYL-3-(1-METHYLETHYL)-
Cyclohexadienylium, 1,5,6,6-tetramethyl-
CYCLOHEXADIENYLIUM, 3-ETHYL-1,5,6,6-TETRAMETHYL-
Cyclohexadienylium, 2,4,6,6-tetramethyl-3-(1-methylethyl)-
CYCLOHEXADIENYLIUM, 2,4,6,6-TETRAMETHYL-
CYCLOHEXADIENYLIUM, 3-ETHYL-2,4,6,6-TETRAMETHYL-
Cyclohexadienylium, 2,3,4,6,6-pentamethyl-
CYCLOHEXADIENYLIUM, 6,6-DIMETHYL-3-(1-METHYLETHYL)-
Cyclohexadienylium, 3-ethyl-6,6-dimethyl-
CYCLOHEXADIENYLIUM, 3,6,6-TRIMETHYL-