Co-reporter:Shaodong Zhou, Jilai Li, Marjan Firouzbakht, Maria Schlangen, and Helmut Schwarz
Journal of the American Chemical Society May 3, 2017 Volume 139(Issue 17) pp:6169-6169
Publication Date(Web):April 12, 2017
DOI:10.1021/jacs.7b01255
The potential of carbonyl rhenium complexes in activating and coupling carbon dioxide and methane has been explored by using a combination of gas-phase experiments (FT-ICR mass spectrometry) and high-level quantum chemical calculations. While the complexes [Re(CO)x]+ (x = 0, 1, 3) are thermally unreactive toward CO2, [Re(CO)2]+ abstracts one oxygen atom from this substrate spontaneously at ambient conditions. Based on 13C and 18O labeling experiments, the newly generated CO ligand is preferentially eliminated, and two mechanistic scenarios are considered to account for this unexpected finding. The oxo complex [ORe(CO)2]+ reacts further with CH4 to produce the dihydridomethylene complex [ORe(CO)(CH2)(H)2]+. However, coupling of the CO and CH2 ligands to form CH2═C═O does not take place. Further, the complexes [Re(CO)x(CH2)]+ (x = 1, 2), generated in the thermal reaction of [Re(CO)x]+ (x = 1, 2) with CH4, are inert toward CO2. Mechanistic insight on the origin of this remarkable reactivity pattern has been derived from detailed quantum chemical calculations.
Co-reporter:Caiyun Geng, Jilai LiThomas Weiske, Maria Schlangen, Sason Shaik, Helmut Schwarz
Journal of the American Chemical Society 2017 Volume 139(Issue 4) pp:1684-1689
Publication Date(Web):January 4, 2017
DOI:10.1021/jacs.6b12514
A mechanistically unique, simultaneous activation of two C–H bonds of methane has been identified during the course of its reaction with the cationic copper carbide, [Cu–C]+. Detailed high-level quantum chemical calculations support the experimental findings obtained in the highly diluted gas phase using FT-ICR mass spectrometry. The behavior of [Cu–C]+/CH4 contrasts that of [Au–C]+/CH4, for which a stepwise bond-activation scenario prevails. An explanation for the distinct mechanistic differences of the two coinage metal complexes is given. It is demonstrated that the coupling of [Cu–C]+ with methane to form ethylene and Cu+ is modeled very well by the reaction of a carbon atom with methane mediated by an oriented external electric field of a positive point charge.
Co-reporter:Dr. Xiao-Nan Wu; Dr. Jilai Li;Dr. Maria Schlangen;Dr. Shaodong Zhou;Dr. Patricio González-Navarrete; Dr. Helmut Schwarz
Chemistry - A European Journal 2017 Volume 23(Issue 4) pp:788-792
Publication Date(Web):2017/01/18
DOI:10.1002/chem.201605226
AbstractThe thermal reactivity of the heteronuclear metal-oxide cluster cations [XAlO4].+ (X=V, Nb, and Ta) towards methane has been studied by using mass spectrometry in conjunction with quantum mechanical calculations. Experimentally, a hydrogen-atom transfer (HAT) from methane is mediated by all the three oxide clusters at ambient conditions. However, [VAlO4].+ is unique in that this cluster directly transforms methane into formaldehyde. The absence of this reaction for the Nb and Ta analogues demonstrates a striking doping effect on the chemoselectivity in the conversion of methane. Mechanistic aspects of the two reactions have been elucidated by quantum-chemical calculations. The HAT reactivity can be attributed to the significant spin density localized at the terminal oxygen atom (Ot.−) of the cluster ions, while the ionic/covalent character of the Lewis acid–base unit [X−Ob] plays a crucial role for the generation of formaldehyde. The mechanistic insight derived from this combined experimental/computational investigation may provide guidance for a more rational design of catalysts.
Co-reporter:Dr. Xiaoyan Sun;Dr. Shaodong Zhou;Dr. Lei Yue;Dr. Maria Schlangen; Dr. Helmut Schwarz
Angewandte Chemie 2017 Volume 129(Issue 33) pp:10122-10126
Publication Date(Web):2017/08/07
DOI:10.1002/ange.201703453
AbstractDie durch die metallfreien, kationischen Cluster [Si2Ox].+ (x=2–5) vermittelte Reduktion von N2O durch CO wurde unter thermischen Bedingungen in der Gasphase mit Fouriertransformations-Ionencyclotronresonanz(FT-ICR)-Massenspektrometrie und quantenchemischen Rechnungen untersucht. Ausgehend von [Si2O2].+ und N2O entsteht in drei Oxidations-/Reduktionsschritten [Si2O5].+. Dieser und die intermediären Oxidcluster reagieren der Reihe nach mit CO unter Rückbildung von [Si2O2].+, d. h., es finden unter thermischen Bedingungen in der Gasphase vollständige Katalysezyklen statt. Mechanistische Aspekte dieser konsekutiven Redoxprozesse wurden untersucht, um die elektronischen Ursachen dieser beispiellosen Reaktionen aufzuklären.
Co-reporter:Dr. Lei Yue; Dr. Jilai Li;Dr. Shaodong Zhou;Dr. Xiaoyan Sun;Dr. Maria Schlangen; Dr. Sason Shaik; Dr. Helmut Schwarz
Angewandte Chemie 2017 Volume 129(Issue 34) pp:10382-10382
Publication Date(Web):2017/08/14
DOI:10.1002/ange.201706516
Unselektive Methanaktivierung …… lässt sich dank des Dipolfelds eines einzelnen Acetonitrilliganden an ZnO+ in einen hochselektiven Prozess umwandeln. Der Ligandeneffekt kann gut modelliert werden kann, indem der Ligand durch das gerichtete externe elektrische Feld einer negativen Punktladung ersetzt wird. In ihrer Zuschrift auf S. 10353 liefern H. Schwarz, S. Shaik et al. weitere Details hierzu.
Co-reporter:Dr. Xiaoyan Sun;Dr. Shaodong Zhou;Dr. Lei Yue;Dr. Maria Schlangen; Dr. Helmut Schwarz
Angewandte Chemie International Edition 2017 Volume 56(Issue 33) pp:9990-9993
Publication Date(Web):2017/08/07
DOI:10.1002/anie.201703453
AbstractThe thermal reduction of N2O by CO mediated by the metal-free cluster cations [Si2Ox].+ (x=2–5) has been examined in the gas phase using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry in conjunction with quantum chemical calculations. Three successive oxidation/reduction steps occur starting from [Si2O2].+ and N2O to form eventually [Si2O5].+; the latter as well as the intermediate oxide cluster ions react sequentially with CO molecules to regenerate [Si2O2].+. Thus, full catalytic cycles occur at ambient conditions in the gas phase. Mechanistic aspects of these sequential redox processes have been addressed to reveal the electronic origins of these unparalleled reactions.
Co-reporter:Dr. Shaodong Zhou;Dr. Lei Yue;Dr. Maria Schlangen; Dr. Helmut Schwarz
Angewandte Chemie International Edition 2017 Volume 56(Issue 45) pp:14297-14300
Publication Date(Web):2017/11/06
DOI:10.1002/anie.201704979
AbstractThe thermal gas-phase reactions of [Al2ZnO4].+ with methane have been explored by using FT-ICR mass spectrometry complemented by high-level quantum chemical calculations. Two competitive mechanisms, that is, hydrogen-atom transfer (HAT) and proton-coupled electron transfer (PCET) are operative. Interestingly, while the HAT process is influenced by the polarity of the transition structure, both the ionic nature of the metal–oxygen bond and the structural rigidity of the cluster oxide affect the PCET pathway. As compared to the previously reported homonuclear [Al2O3].+ and [ZnO].+, the heteronuclear oxide [Al2ZnO4].+ exhibits a much higher chemoselectivity towards methane. The electronic origins of the doping effect have been explored.
Co-reporter:Dr. Lei Yue; Dr. Jilai Li;Dr. Shaodong Zhou;Dr. Xiaoyan Sun;Dr. Maria Schlangen; Dr. Sason Shaik; Dr. Helmut Schwarz
Angewandte Chemie International Edition 2017 Volume 56(Issue 34) pp:10248-10248
Publication Date(Web):2017/08/14
DOI:10.1002/anie.201706516
Nonselective methane activation can be changed to a highly selective process as a result of the dipole field of a single acetonitrile ligand attached to bare ZnO+. The ligand effect can be modeled well by an oriented external electric field of a negative point charge. In their Communication on page 10219 ff., H. Schwarz, S. Shaik, and co-workers provide more details.
Co-reporter:Dr. Lei Yue; Dr. Jilai Li;Dr. Shaodong Zhou;Dr. Xiaoyan Sun;Dr. Maria Schlangen; Dr. Sason Shaik; Dr. Helmut Schwarz
Angewandte Chemie International Edition 2017 Volume 56(Issue 34) pp:10219-10223
Publication Date(Web):2017/08/14
DOI:10.1002/anie.201703485
AbstractAn unexpected mechanistic switch as well as a change of the product distribution in the thermal gas-phase activation of methane have been identified when diatomic [ZnO].+ is ligated with acetonitrile. Theoretical studies suggest that a strong metal–carbon attraction in the pristine [ZnO].+ species plays an important role in the rebound of the incipient CH3. radical to the metal center, thus permitting the competitive generation of CH3., OH., and CH3OH. This interaction is drastically weakened by a single CH3CN ligand. As a result, upon ligation the proton-coupled single electron transfer that prevails for [ZnO].+/CH4 switches to the classical hydrogen-atom-transfer process, thus giving rise to the exclusive expulsion of CH3.. This ligand effect can be modeled quite well by an oriented external electric field of a negative point charge.
Co-reporter:Helmut Schwarz, Patricio González-Navarrete, Jilai Li, Maria Schlangen, Xiaoyan Sun, Thomas Weiske, and Shaodong Zhou
Organometallics 2017 Volume 36(Issue 1) pp:8-17
Publication Date(Web):June 14, 2016
DOI:10.1021/acs.organomet.6b00372
In this review gas-phase studies conducted (mostly) at the Berlin laboratory of the authors are presented. The focus will be on describing mechanistic variants we (and others) came across recently in investigating the thermal activation of methane in the gas phase under idealized conditions. Typical examples include the discussion of those hydrogen-atom-transfer processes that do not follow the well-established conventional pathways in which oxyl radicals play a decisive role. This is the case when the spin is located at a metal center, as in [Al2O2]•+, and the C–H bond cleavage follows a proton-coupled electron-transfer mechanism. Also, examples will be presented in which a high spin density at a bridging oxygen atom can be generated by judicious “doping” of the cluster oxides. Further, the particular role Lewis-acidic sites play in the methane activation by closed-shell metal-oxide ions will be highlighted. Then, aspects of the dissociative adsorption of CH4 on rather small cluster ions will be analyzed; here, among other factors, e.g., the role of relativistic bond stabilization, intriguing ligand effects will be reported. Finally, in the context of Fischer–Tropsch-related chemistry, we will describe novel C–C coupling reactions occurring at room temperature with CH4. Common to most systems studied is the synergy between experiment and computational chemistry, and for a few examples remarkable mechanistic commonalities with reactions at a surface were encountered.
Co-reporter:Patricio González-Navarrete;Maria Schlangen
Structural Chemistry 2017 Volume 28( Issue 2) pp:403-413
Publication Date(Web):2017 April
DOI:10.1007/s11224-016-0862-2
The ion/molecule reactions of molybdenum and tungsten monoxide cations MO+ (M═Mo, W) with ethanol have been studied by Fourier transform ion-cyclotron resonance mass spectrometry (FT-ICR MS) and density functional theory (DFT) calculations. As observed in the previously reported reactions of MO2+ (M═Mo, W) towards ethanol, the dehydration of ethanol to give rise to the elimination of neutral C2H4 constitutes also the dominating reaction channel for the monoxides. Likewise, both systems result in a combined dehydrogenation/dehydration process, thus forming the ionic product MOC2H2+; moreover, the tungsten system presents two additional reaction channels: double dehydrogenation of ethanol with concomitant formation of the ionic product WO2C2H2+ and the generation of C2H5+ which takes place by OH− transfer from ethanol to the tungsten atom. This combined experimental/computational study of gas-phase ion molecule reactions may shed some new light on the mechanisms that occur in complex catalytic systems.
Co-reporter:Dr. Lei Yue; Dr. Jilai Li;Dr. Shaodong Zhou;Dr. Xiaoyan Sun;Dr. Maria Schlangen; Dr. Sason Shaik; Dr. Helmut Schwarz
Angewandte Chemie 2017 Volume 129(Issue 34) pp:10353-10357
Publication Date(Web):2017/08/14
DOI:10.1002/ange.201703485
AbstractDie Bindung von Acetonitril an zweiatomiges [ZnO].+ führt bei der thermischen Aktivierung von Methan in der Gasphase zu einem unerwarteten Wechsel der Reaktionsmechanismen und einer Umverteilung der Produkte. Theoretischen Studien zufolge spielt die starke Metall-Kohlenstoff-Bindung bei der ligandenfreien [ZnO].+-Spezies eine bedeutende Rolle für die Rückbindung des CH3.-Radikals an das Metallzentrum; hierdurch wird die kompetitive Bildung von CH3., OH. und CH3OH ermöglicht. Diese Wechselwirkung wird durch einen CH3CN-Liganden drastisch reduziert, was mechanistisch zu einem Wechsel von der bei [ZnO].+/CH4 dominierenden protonengekoppelten Elektronenübertragung zum klassischen Wasserstoffatomtransfer, gefolgt von der ausschließlichen Abspaltung von CH3., führt. Dieser Ligandeneffekt kann durch das gerichtete externe elektrische Feld einer negativen Punktladung gut modelliert werden.
Co-reporter:Shaodong Zhou, Jilai Li, Maria Schlangen, and Helmut Schwarz
Accounts of Chemical Research 2016 Volume 49(Issue 3) pp:494
Publication Date(Web):February 12, 2016
DOI:10.1021/acs.accounts.5b00023
“Bare” metal–carbene complexes, when generated in the gas phase and exposed to thermal reactions under (near) single-collision conditions, exhibit rather unique reactivities in addition to the well-known metathesis and cyclopropanation processes. For example, at room temperature the unligated [AuCH2]+ complex brings about efficient C–C coupling with methane to produce C2Hx (x = 4, 6), and the couple [TaCH2]+/CO2 gives rise to the generation of the acetic acid equivalent CH2═C═O. Entirely unprecedented is the thermal extrusion of a carbon atom from halobenzenes (X = F, Cl, Br, I) by [MCH2]+ (M = La, Hf, Ta, W, Re, Os) and its coupling with the methylene ligand to deliver C2H2 and [M(X)(C5H5)]+. Among the many noteworthy C–N bond-forming processes, the formation of CH3NH2 from [RhCH2]+/NH3, the generation of CH2═NH2+ from [MCH2]+/NH3 (M = Pt, Au), and the production of [PtCH═NH2]+ from [PtCH2]+/NH3 are of particular interest. The latter species are likely to be involved as intermediates in the platinum-mediated large-scale production of HCN from CH4/NH3 (the DEGUSSA process). In this context, a few examples are presented that point to the operation of co-operative effects even at a molecular level. For instance, in the coupling of CH4 with NH3 by the heteronuclear clusters [MPt]+ (M = coinage metal), platinum is crucial for the activation of methane, while the coinage metal M controls the branching ratio between the C–N bond-forming step and unwanted soot formation.For most of the gas-phase reactions described in this Account, detailed mechanistic insight has been derived from extensive computational work in conjunction with time-honored labeling and advanced mass-spectrometry-based experiments, and often a coherent description of the experimental findings has been achieved. As for some transition metals, in particular those from the third row, the metal–carbene complexes can be formed directly from methane, coupling of the so-generated [MCH2] species with an inert molecule such as CH4, CO2, or NH3 constitutes a route to activate and functionalize methane under ambient conditions. Clearly, while these gas-phase studies cannot be translated directly to formally related processes in solution or those that occur at a surface, they nevertheless provide a conceptual mechanistic understanding and permit researchers to probe directly the remarkable intrinsic features of these elusive molecules and, in a broader context, help to identify the active site of a catalyst, the so-called “aristocratic atoms”.
Co-reporter:Nicole J. Rijs; Patricio González-Navarrete; Maria Schlangen
Journal of the American Chemical Society 2016 Volume 138(Issue 9) pp:3125-3135
Publication Date(Web):February 9, 2016
DOI:10.1021/jacs.5b12972
Traveling wave ion mobility spectrometry (TWIMS) isomer separation was exploited to react the particularly well-defined ionic species [LCuO]+ (L = 1,10-phenanthroline) with the neutral fluoromethane substrates CH(4–n)Fn (n = 1–3) in the gas phase. Experimentally, the monofluoromethane substrate (n = 1) undergoes both hydrogen-atom transfer, forming the copper hydroxide complex [LCuOH]•+ and concomitantly a CH2F• radical, and oxygen-atom transfer, yielding the observable ionic product [LCu]+ plus the neutral oxidized substrate [C,H3,O,F]. DFT calculations reveal that the mechanism for both product channels relies on the initial C–H bond activation of the substrate. Compared to nonfluorinated methane, the addition of fluorine to the substrate assists the reactivity through a lowering of the C–H bond energy and reaction preorganization (through noncovalent interaction in the encounter complex). A two-state reactivity scenario is mandatory for the oxidation, which competitively results in the unusual fluoromethanol product, CH2FOH, or the decomposed products, CH2O and HF, with the latter channel being kinetically disfavored. Difluoromethane (n = 2) is predicted to undergo the analogous reactions at room temperature, although the reactions are less favored than those of monofluoromethane. The reaction of trifluoromethane (n = 3, fluoroform) through C–H activation is kinetically hindered under ambient conditions but might be expected to occur in the condensed phase upon heating or with further lowering of reaction barriers through templation with counterions, such as potassium. Overall, formation of CH(3–n)Fn• and CH(3–n)FnOH occurs under relatively gentle energetic conditions, which sheds light on their potential as reactive intermediates in fluoromethylation reactions mediated by copper in the presence of oxygen.
Co-reporter:Jilai Li, Shaodong Zhou, Jun Zhang, Maria Schlangen, Dandamudi Usharani, Sason Shaik, and Helmut Schwarz
Journal of the American Chemical Society 2016 Volume 138(Issue 35) pp:11368-11377
Publication Date(Web):August 12, 2016
DOI:10.1021/jacs.6b07246
The C–H bond activation of methane mediated by a prototypical heteronuclear metal-oxide cluster, [Al2Mg2O5]•+, was investigated by using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) in conjunction with high-level quantum mechanical calculations. Experimentally, hydrogen-atom abstraction from methane by the cluster ion [Al2Mg2O5]•+ takes place at ambient conditions. As to the mechanism, according to our computational findings, both the proton-coupled electron transfer (PCET) and the conventional hydrogen-atom transfer (HAT) are feasible and compete with each other. This is in distinct contrast to the [XYO2]+ (X, Y = Mg, Al, Si) cluster oxide ions which activate methane exclusively via the PCET route (Li, J.; Zhou, S.; Zhang, J.; Schlangen, M.; Weiske, T.; Usharani, D.; Shaik, S.; Schwarz, H. J. Am. Chem. Soc. 2016, 138, 7973–7981). The electronic origins of the mechanistically rather complex reactivity scenarios of the [Al2Mg2O5]•+/CH4 couple were elucidated. For the PCET mechanism, in which the Lewis acid–base pair [Al+–O–] of the cluster acts as the active site, a clear correlation has been established between the nature of the transition state, the corresponding barrier height, the Lewis acidity-basicity of the [M+–O–] unit, as well as the bond order of the M+–O– bond. Also addressed is the role of the spin and charge distributions of a terminal oxygen radical site in the direct HAT route. The knowledge of the factors that control the reactivity of PCET and HAT pathways not only deepens our mechanistic understanding of metal-oxide mediated C–H bond activation but may also provide guidance for the rational design of catalysts.
Co-reporter:Jilai Li; Shaodong Zhou; Jun Zhang; Maria Schlangen; Thomas Weiske; Dandamudi Usharani; Sason Shaik
Journal of the American Chemical Society 2016 Volume 138(Issue 25) pp:7973-7981
Publication Date(Web):May 30, 2016
DOI:10.1021/jacs.6b03798
The reactivity of the homo- and heteronuclear oxide clusters [XYO2]+ (X, Y = Al, Si, Mg) toward methane was studied using Fourier transform ion cyclotron resonance mass spectrometry, in conjunction with high-level quantum mechanical calculations. The most reactive cluster by both experiment and theory is [Al2O2]•+. In its favorable pathway, this cluster abstracts a hydrogen atom by means of proton-coupled electron transfer (PCET) instead of following the conventional hydrogen-atom transfer (HAT) route. This mechanistic choice originates in the strong Lewis acidity of the aluminum site of [Al2O2]•+, which cleaves the C–H bond heterolytically to form an Al–CH3 entity, while the proton is transferred to the bridging oxygen atom of the cluster ion. In addition, a comparison of the reactivity of heteronuclear and homonuclear oxide clusters [XYO2]+ (X, Y = Al, Si, Mg) reveals a striking doping effect by aluminum. Thus, the vacant s–p hybrid orbital on Al acts as an acceptor of the electron pair from methyl anion (CH3–) and is therefore eminently important for bringing about thermal methane activation by PCET. For the Al-doped cluster ions, the spin density at an oxygen atom, which is crucial for the HAT mechanism, acts here as a spectator during the course of the PCET mediated C–H bond cleavage. A diagnostic plot of the deformation energy vis-à-vis the barrier shows the different HAT/PCET reactivity map for the entire series. This is a strong connection to the recently discussed mechanism of oxidative coupling of methane on magnesium oxide surfaces proceeding through Grignard-type intermediates.
Co-reporter:Dr. Shaodong Zhou;Dr. Jilai Li;Dr. Xiao-Nan Wu;Dr. Maria Schlangen; Helmut Schwarz
Angewandte Chemie International Edition 2016 Volume 55( Issue 1) pp:441-444
Publication Date(Web):
DOI:10.1002/anie.201509320
Abstract
The thermal reactions of the closed-shell, “naked” gold–carbene complex [Au(CH2)]+ with methane have been explored by using FTICR mass spectrometry complemented by quantum chemical (QC) calculations at the CCSD(T)//BMK level of theory. Mechanistic aspects for this unprecedentedly efficient carbene insertion in the CH bond of methane have been addressed and the origin of the counterintuitive high reactivity of [Au(CH2)]+ towards this most inert hydrocarbon is discussed.
Co-reporter:Dr. Shaodong Zhou;Dr. Jilai Li;Dr. Maria Schlangen;Dr. Helmut Schwarz
Angewandte Chemie International Edition 2016 Volume 55( Issue 25) pp:7257-7260
Publication Date(Web):
DOI:10.1002/anie.201601965
Abstract
Thermal reactions of the closed-shell metal-oxide cluster [TaO3]+ with methane were investigated by using FTICR mass spectrometry complemented by high-level quantum chemical calculations. While the generation of methanol and formaldehyde is somewhat expected, [TaO3]+ remarkably also has the ability to abstract two hydrogen atoms from methane with the elimination of CH2. Mechanistically, the generation of CH2O and CH3OH occurs on the singlet-ground-state surface, while for the liberation of 3CH2, a two-state reactivity scenario prevails.
Co-reporter:Dr. Shaodong Zhou;Dr. Jilai Li;Dr. Maria Schlangen;Dr. Helmut Schwarz
Angewandte Chemie International Edition 2016 Volume 55( Issue 36) pp:10877-10880
Publication Date(Web):
DOI:10.1002/anie.201605259
Abstract
The thermal reaction of [AuO]+ with methane has been explored using FT-ICR mass spectrometry complemented by high-level quantum chemical calculations. In contrast to the previously studied congener [CuO]+, and to [AgO]+, [AuO]+ reacts with CH4 exclusively via oxygen-atom transfer to form CH3OH, and a novel mechanistic scenario for this selective oxidation process has been revealed. Also, the origin of the inertness of the [AgO]+/CH4 couple has been addressed computationally.
Co-reporter:Dr. Patricio González-Navarrete;Dr. Maria Schlangen;Dr. Xiao-Nan Wu ;Dr. Helmut Schwarz
Chemistry - A European Journal 2016 Volume 22( Issue 9) pp:3077-3083
Publication Date(Web):
DOI:10.1002/chem.201504929
Abstract
The ion/molecule reactions of molybdenum and tungsten dioxide cations with ethanol have been studied by Fourier transform ion-cyclotron resonance mass spectrometry (FT-ICR MS) and density functional theory (DFT) calculations. Dehydration of ethanol has been found as the dominant reaction channel, while generation of the ethyl cation corresponds to a minor product. Cleary, the reactions are mainly governed by the Lewis acidity of the metal center. Computational results, together with isotopic labeling experiments, show that the dehydration of ethanol can proceed either through a conventional concerted [1,2]-elimination mechanism or a step-wise process; the latter occurs via a hydroxyethoxy intermediate. Formation of C2H5+ takes place by transfer of OH− from ethanol to the metal center of MO2+. The molybdenum and tungsten dioxide cations exhibit comparable reactivities toward ethanol, and this is reflected in similar reaction rate constants and branching ratios.
Co-reporter:Dr. Shaodong Zhou;Dr. Jilai Li;Dr. Maria Schlangen;Dr. Helmut Schwarz
Chemistry - A European Journal 2016 Volume 22( Issue 9) pp:3073-3076
Publication Date(Web):
DOI:10.1002/chem.201504571
Abstract
Carbon-atom extrusion from the ipso-position of a halobenzene ring (C6H5X; X=F, Cl, Br, I) and its coupling with a methylene ligand to produce acetylene is not confined to [LaCH2]+; also, the third-row transition-metal complexes [MCH2]+, M=Hf, Ta, W, Re, and Os, bring about this unusual transformation. However, substrates with substituents X=CN, NO2, OCH3, and CF3 are either not reactive at all or give rise to different products when reacted with [LaCH2]+. In the thermal gas-phase processes of atomic Ln+ with C7H7Cl substrates, only those lanthanides with a promotion energy small enough to attain a 4fn5d16s1 configuration are reactive and form both [LnCl]+ and [LnC5H5Cl]+. Branching ratios and the reaction efficiencies of the various processes seem to correlate with molecular properties, like the bond-dissociation energies of the C−X or M+−X bonds or the promotion energies of lanthanides.
Co-reporter:Dr. Shaodong Zhou;Dr. Jilai Li;Dr. Maria Schlangen;Dr. Helmut Schwarz
Angewandte Chemie 2016 Volume 128( Issue 25) pp:7374-7377
Publication Date(Web):
DOI:10.1002/ange.201601965
Abstract
Die thermischen Reaktionen des geschlossenschaligen Metalloxidclusters [TaO3]+ mit Methan wurden mittels FT-ICR-Massenspektrometrie sowie modernen quantenchemischen Methoden untersucht. Während die Bildung von Methanol und Formaldehyd zu erwarten war, ist die Fähigkeit von [TaO3]+ zur Abstraktion von zwei Wasserstoffatomen unter Eliminierung von CH2 sehr ungewöhnlich. Mechanistisch entstehen CH2O und CH3OH auf der Potentialfläche des Singulett-Grundzustandes, während die Eliminierung von 3CH2 über eine Zweizustandsreaktivität verläuft.
Co-reporter:Dr. Shaodong Zhou;Dr. Jilai Li;Dr. Maria Schlangen;Dr. Helmut Schwarz
Angewandte Chemie 2016 Volume 128( Issue 36) pp:11036-11039
Publication Date(Web):
DOI:10.1002/ange.201605259
Abstract
Die thermischen Reaktionen von [AuO]+ mit Methan wurden mittels FT-ICR-Massenspektrometrie und quantenchemischen Rechnungen untersucht. Im Gegensatz zu den bereits untersuchten Oxiden der 11. Gruppe, [CuO]+ und [AgO]+, reagiert [AuO]+ mit CH4 ausschließlich unter Bildung von CH3OH durch Sauerstoffatomübertragung. Der neuartige Mechanismus dieser spezifischen Oxidation wird vorgestellt und die Ursachen der Trägheit des [AgO]+/CH4-Reaktionspaares mittels theoretischer Untersuchungen aufgedeckt.
Co-reporter:Dr. Shaodong Zhou;Dr. Jilai Li;Dr. Maria Schlangen;Dr. Helmut Schwarz
Angewandte Chemie 2016 Volume 128( Issue 27) pp:7816-7819
Publication Date(Web):
DOI:10.1002/ange.201602312
Abstract
Die thermischen Reaktionen von Methan mit [HfO].+ und [XHfO]+ (X=F, Cl, Br, I) wurden mittels FT-ICR-Massenspektrometrie und modernen quantenchemischen Rechnungen untersucht. Während [HfO].+ gegenüber Methan inert ist, ermöglichen die geschlossenschaligen Ionen [XHfO]+ (X=F, Cl, Br) überraschenderweise die Aktivierung der H3C-H-Bindung unter Bildung des Insertionsproduktes [Hf(X)(OH)(CH3)]+. Mögliche Ursachen dieses außergewöhnlichen Ligandeneffekts werden diskutiert.
Co-reporter:Dr. Shaodong Zhou;Dr. Jilai Li;Dr. Xiao-Nan Wu;Dr. Maria Schlangen; Helmut Schwarz
Angewandte Chemie 2016 Volume 128( Issue 1) pp:452-455
Publication Date(Web):
DOI:10.1002/ange.201509320
Abstract
Die thermischen Reaktionen des geschlossenschaligen, “nackten” Gold-Carben-Komplexes [Au(CH2)]+ mit Methan wurden mittels FT-ICR-Massenspektrometrie und quantenchemischen Rechnungen (CCSD(T)//BMK) untersucht. Die effiziente Insertion des Carbenliganden in die C-H-Bindung von Methan wird unter mechanistischen Gesichtspunkten beleuchtet, und die Ursache der unerwartet hohen Reaktivität von [Au(CH2)]+ gegenüber dem höchst inerten Kohlenwasserstoff diskutiert.
Co-reporter:Dr. Shaodong Zhou;Dr. Jilai Li;Dr. Maria Schlangen;Dr. Helmut Schwarz
Angewandte Chemie International Edition 2016 Volume 55( Issue 27) pp:7685-7688
Publication Date(Web):
DOI:10.1002/anie.201602312
Abstract
The thermal reactions of methane with [HfO].+ and [XHfO]+ (X=F, Cl, Br, I) were investigated by using FT-ICR mass spectrometry complemented by high-level quantum chemical calculations. Surprisingly, in contrast to the inertness of [HfO].+ towards methane, the closed-shell oxide ions [XHfO]+ (X=F, Cl, Br) activate the H3C−H bond to form the insertion products [Hf(X)(OH)(CH3)]+. The possible origin of this remarkable ligand effect is discussed.
Co-reporter:Dr. Shaodong Zhou;Dr. Jilai Li;Dr. Maria Schlangen;Dr. Helmut Schwarz
Chemistry - A European Journal 2016 Volume 22( Issue 21) pp:7225-7228
Publication Date(Web):
DOI:10.1002/chem.201600498
Abstract
High-level electronic structure calculations, in combination with Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometric studies, permit the mechanism by which closed-shell, “naked” [TaO2]+ brings about C−H bond activation of methane to be revealed. These studies also help to understand why the lighter congeners of [MO2]+ (M=V, Nb) are unreactive under ambient conditions.
Co-reporter:Dr. Shaodong Zhou;Dr. Jilai Li;Dr. Maria Schlangen;Dr. Helmut Schwarz
Chemistry - A European Journal 2016 Volume 22( Issue 13) pp:
Publication Date(Web):
DOI:10.1002/chem.201504654
Co-reporter:Dr. Shaodong Zhou;Dr. Jilai Li;Dr. Maria Schlangen;Dr. Helmut Schwarz
Chemistry - A European Journal 2016 Volume 22( Issue 13) pp:4336-4339
Publication Date(Web):
DOI:10.1002/chem.201600061
Abstract
The thermal reaction of [Ho(CH2S)]+ with toluene giving rise to [C6H5CHSHo]+ and CH4 has been investigated using Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry complemented by density functional theory (DFT) calculations. The high reactivity of [Ho(CH2S)]+ which is in distinct contrast with the non-reactivity of “bare” Ho+ has its origin in the presence of a carbon-centered radical; the latter initiates hydrogen-atom abstraction from the methyl group of toluene as the first step of a sequence of hydrogen and sulfur transfer mediated by cationic holmium.
Co-reporter:Nicole J. Rijs, Thomas Weiske, Maria Schlangen, and Helmut Schwarz
Analytical Chemistry 2015 Volume 87(Issue 19) pp:9769
Publication Date(Web):September 17, 2015
DOI:10.1021/acs.analchem.5b01985
The number of separations and analyses of molecular species using traveling wave ion-mobility spectrometry-mass spectrometry (TWIMS-MS) is increasing, including those extending the technique to analytes containing metal atoms. A critical aspect of such applications of TWIMS-MS is the validity of the collisional cross sections (CCSs) measured and whether they can be accurately calibrated against other ion-mobility spectrometry (IMS) techniques. Many metal containing species have potential reactivity toward molecular nitrogen, which is present in high concentration in the typical Synapt-G2 TWIMS cell. Here, we analyze the effect of nitrogen on the drift time of a series of cationic 1,10-phenanthroline complexes of the late transition metals, [(phen)M]+, (M = Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, and Hg) in order to understand potential deviations from expected drift time behaviors. These metal complexes were chosen for their metal open-coordination site and lack of rotameric species. The target species were generated via electrospray ionization (ESI), analyzed using TWIMS in N2 drift gas, and the observed drift time trends compared. Theoretically derived CCSs for all species (via both the projection approximation and trajectory method) were also compared. The results show that, indeed, for metal containing species in this size regime, reaction with molecular nitrogen has a dramatic effect on measured drift times and must not be ignored when comparing and interpreting TWIMS arrival time distributions. Density-functional theory (DFT) calculations are employed to analyze the periodic differences due to the metal’s interaction with nitrogen (and background water) in detail.
Co-reporter:Dr. Helmut Schwarz
Angewandte Chemie 2015 Volume 127( Issue 35) pp:10228-10239
Publication Date(Web):
DOI:10.1002/ange.201500649
Abstract
Gasphasenuntersuchungen sinnvoll dotierter Oxidcluster erlauben es, sich Herausforderungen wie der Tieftemperaturoxidation von CO oder der selektiven Umwandlung von Kohlenwasserstoffen zu stellen. Die gezielte Modifikation von Größe und Zusammensetzung freier Cluster ermöglicht es, lokale Ladungseffekte und den Spinzustand systematisch zu beeinflussen, und die Kombination von Rechnungen und Spektroskopie kann helfen, das aktive Zentrum eines Katalysators zu identifizieren und mechanistische Details von Reaktionen aufzudecken. Zudem ist es möglich, das Zusammenspiel von Trägermaterial und aktiver Komponente eines mehrkomponentigen, katalytisch aktiven Clusters zu untersuchen. Beispiele sollen zeigen, wie und warum die Gasphasenreaktivität heteronuklearer Cluster in Bezug auf kleine und üblicherweise recht inerte Moleküle gegenüber derjenigen ihrer homonuklearen Analoga erhöht oder vermindert sein kann.
Co-reporter:Dr. Shaodong Zhou;Dr. Maria Schlangen;Dr. Jilai Li;Dr. Xiao-Nan Wu ;Dr. Helmut Schwarz
Chemistry - A European Journal 2015 Volume 21( Issue 41) pp:14305-14308
Publication Date(Web):
DOI:10.1002/chem.201502183
Abstract
Mechanistic aspects of an unusual reaction of [HoC6H4S]+ with CH3X (X=Cl, Br, I) have been investigated using Fourier-transform ion cyclotron resonance mass spectrometry combined with density functional theory (DFT) calculations. In this thermal process, all four bonds of the methyl halides are cleaved.
Co-reporter:Dr. Shaodong Zhou;Dr. Maria Schlangen ;Dr. Helmut Schwarz
Chemistry - A European Journal 2015 Volume 21( Issue 5) pp:2123-2131
Publication Date(Web):
DOI:10.1002/chem.201405964
Abstract
The gas-phase reactions of chlorobenzene with all atomic lanthanide cations Ln+ (except Pm+) have been investigated by using Fourier transform ion cyclotron resonance mass spectrometry in conjunction with density functional theory calculations. According to the latter, a direct chlorine transfer to the lanthanide cation, which has been observed previously for fluorine abstraction from fluorobenzene, is not operative for the C6H5Cl/Ln+ couples; rather, chlorine transfer proceeds through an initial coordination of the lanthanide cation to the aromatic ring of the substrate. Both, the product distribution and the chlorine abstraction efficiencies are affected by the bond dissociation energy (BDE(Ln+Cl)) as well as the promotion energies of Ln+ to attain a 4fn 5d1 6s1 configuration. In addition, mechanistic aspects of some CH and CC bond activations are presented. Where appropriate, comparison with the previously studied C6H5F/Ln+ systems is made.
Co-reporter:Dr. Helmut Schwarz
Angewandte Chemie International Edition 2015 Volume 54( Issue 35) pp:10090-10100
Publication Date(Web):
DOI:10.1002/anie.201500649
Abstract
Gas-phase investigations of judiciously doped oxide clusters permit to address fundamental challenges related to, for example, the low-temperature oxidation of CO or the selective conversion of hydrocarbons. Modifying the size and composition of a free cluster in a controlled way enables the modification of local charge effects and of spin states, and spectroscopic studies in combination with computational work help to identify the active site of a catalyst and to unravel mechanistic details. Also, the interplay of the support material with the reactive part of a composite catalyst cluster can be addressed. Examples will be presented demonstrating how and why the gas-phase reactivities of heteronuclear clusters, in comparison with their homonuclear counterparts, toward small, generally rather inert molecules can be increased, decreased, or not significantly affected.
Co-reporter:Dr. Jilai Li;Dr. Shaodong Zhou;Dr. Xiao-Nan Wu;Dr. Shiya Tang;Dr. Maria Schlangen;Dr. Helmut Schwarz
Angewandte Chemie International Edition 2015 Volume 54( Issue 40) pp:11861-11864
Publication Date(Web):
DOI:10.1002/anie.201505336
Abstract
Mechanistic insight into the homolytic cleavage of the OH bond of water by the heteronuclear oxide cluster [Ga2Mg2O5].+ has been derived from state-of-the-art gas-phase experiments in conjunction with quantum chemical calculations. Three pathways have been identified computationally. In addition to the conventional hydrogen-atom transfer (HAT) to the radical center of a bridging oxygen atom, two mechanistically distinct proton-coupled electron-transfer (PCET) processes have been identified. The energetically most favored path involves initial coordination of the incoming water ligand to a magnesium atom followed by an intramolecular proton transfer to the lone-pair of the bridging oxygen atom. This step, which is accomplished by an electronic reorganization, generates two structurally equivalent OH groups either of which can be liberated, in agreement with labeling experiments.
Co-reporter:Dr. Jilai Li;Dr. Shaodong Zhou;Dr. Xiao-Nan Wu;Dr. Shiya Tang;Dr. Maria Schlangen;Dr. Helmut Schwarz
Angewandte Chemie 2015 Volume 127( Issue 40) pp:12028-12032
Publication Date(Web):
DOI:10.1002/ange.201505336
Abstract
Der Mechanismus der durch den heteronuklearen Oxidcluster [Ga2Mg2O5].+ vermittelten homolytischen Spaltung der O-H-Bindung in Wasser wurde mittels moderner Gasphasenexperimente und quantenchemischer Rechnungen eingehend untersucht. Basierend auf den theoretischen Untersuchungen lassen sich drei Reaktionswege unterscheiden: Neben der klassischen Übertragung eines Wasserstoffatoms (hydrogen-atom transfer, HAT) auf ein radikalisches Sauerstoffatom existieren zwei mechanistisch unterschiedliche, protonengekoppelte Elektronenübertragungen (proton-coupled electron transfer, PCET). Nach Koordination des Wassermoleküls an ein Magnesiumatom des Clusters zeichnet sich der energetisch günstigste Reaktionsweg durch einen intramolekularen Protonentransfer auf das freie Elektronenpaar eines verbrückenden Sauerstoffatoms sowie durch eine Reorganisation der Elektronenstruktur des Clusters aus. Dabei werden zwei strukturell identische OH-Gruppen generiert, von denen eine – in Übereinstimmung mit Isotopenmarkierungsexperimenten – im weiteren Verlauf der Reaktion abgespalten wird.
Co-reporter:Dr. Jilai Li;Dr. Xiao-Nan Wu;Dr. Shaodong Zhou;Dr. Shiya Tang;Dr. Maria Schlangen;Dr. Helmut Schwarz
Angewandte Chemie 2015 Volume 127( Issue 42) pp:
Publication Date(Web):
DOI:10.1002/ange.201584261
Co-reporter:Dr. Jilai Li;Dr. Xiao-Nan Wu;Dr. Maria Schlangen;Dr. Shaodong Zhou;Dr. Patricio González-Navarrete;Dr. Shiya Tang;Dr. Helmut Schwarz
Angewandte Chemie 2015 Volume 127( Issue 17) pp:5163-5167
Publication Date(Web):
DOI:10.1002/ange.201412441
Abstract
Der heteronukleare Oxidcluster [Ga2Mg2O5].+, der ein ungepaartes Elektron an einem verbrückenden Sauerstoffatom (Ob.−) besitzt, wurde mittels Fouriertransformations-Ionenzyklotronresonanz-Massenspektrometrie (FT-ICR-MS) auf seine Reaktivität gegenüber Methan und Ethan untersucht. In diesen Experimenten wird sowohl in der Reaktion mit Methan als auch mit Ethan die Übertragung eines Wasserstoffatoms (hydrogen-atom transfer, HAT) vom Substrat auf den Cluster beobachtet. Die Reaktionsmechanismen konnten durch quantenchemische Rechnungen aufgeklärt werden. Die durch die theoretischen Untersuchungen verdeutlichte Rolle von Spindichte und Ladungsverteilung für HAT-Prozesse vertieft das mechanistische Verständnis von C-H-Bindungsaktivierungen und stellt zudem eine wichtige Orientierung für das rationale Design von Katalysatoren unter besonderer Betonung von Dotierungseffekten dar.
Co-reporter:Dr. Jilai Li;Dr. Xiao-Nan Wu;Dr. Shaodong Zhou;Dr. Shiya Tang;Dr. Maria Schlangen;Dr. Helmut Schwarz
Angewandte Chemie 2015 Volume 127( Issue 42) pp:12472-12477
Publication Date(Web):
DOI:10.1002/ange.201503763
Abstract
Die thermischen Reaktionen des heteronuklearen Oxidclusters [Ga2MgO4].+ mit Methan und Wasser wurden mit modernsten Gasphasenexperimenten und quantenchemischen Rechnungen untersucht. Im Gegensatz zur H-Abstraktion aus Methan folgt die Aktivierung von Wasser einem protonengekoppelten Elektronentransfermechanismus (proton-coupled electron transfer, PCET); ihm ist die deutlich höhere Reaktivität gegenüber der starken O-H-Bindung geschuldet. Die Erkenntnisse dieser Studie vertiefen das mechanistische Verständnis, wie inerte R-H-Bindungen durch Metalloxide gespalten werden können.
Co-reporter:Dr. Jilai Li;Dr. Patricio González-Navarrete;Dr. Maria Schlangen;Dr. Helmut Schwarz
Chemistry - A European Journal 2015 Volume 21( Issue 21) pp:7780-7789
Publication Date(Web):
DOI:10.1002/chem.201500715
Co-reporter:Dr. Shi-Ya Tang;Dr. Nicole J. Rijs;Dr. Jilai Li;Dr. Maria Schlangen ;Dr. Helmut Schwarz
Chemistry - A European Journal 2015 Volume 21( Issue 23) pp:8483-8490
Publication Date(Web):
DOI:10.1002/chem.201500722
Abstract
CO2 activation mediated by [LTiH]+ (L=Cp2, O) is observed in the gas phase at room temperature using electrospray-ionization mass spectrometry, and reaction details are derived from traveling wave ion-mobility mass spectrometry. Wheresas oxygen-atom transfer prevails in the reaction of the oxide complex [OTiH]+ with CO2, generating [OTi(OH)]+ under the elimination of CO, insertion of CO2 into the metal–hydrogen bond of the cyclopentadienyl complex, [Cp2TiH]+, gives rise to the formate complex [Cp2Ti(O2CH)]+. DFT-based methods were employed to understand how the ligand controls the observed variation in reactivity toward CO2. Insertion of CO2 into the TiH bond constitutes the initial step for the reaction of both [Cp2TiH]+ and [OTiH]+, thus generating formate complexes as intermediates. In contrast to [Cp2Ti(O2CH)]+ which is kinetically stable, facile decarbonylation of [OTi(O2CH)]+ results in the hydroxo complex [OTi(OH)]+. The longer lifetime of [Cp2Ti(O2CH)]+ allows for secondary reactions with background water, as a result of which, [Cp2Ti(OH)]+ is formed. Further, computational studies reveal a good linear correlation between the hydride affinity of [LTi]2+ and the barrier for CO2 insertion into various [LTiH]+ complexes. Understanding the intrinsic ligand effects may provide insight into the selective activation of CO2.
Co-reporter:Dr. Shaodong Zhou;Dr. Maria Schlangen;Dr. Jilai Li;Dr. Xiao-Nan Wu ;Dr. Helmut Schwarz
Chemistry - A European Journal 2015 Volume 21( Issue 27) pp:9629-9631
Publication Date(Web):
DOI:10.1002/chem.201501871
Abstract
Mechanistic aspects of an unusual gas-phase reaction of [LaCH2]+ with halobenzenes have been investigated using Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry combined with density functional theory (DFT) calculations. In this thermal process a carbon-atom from the benzene ring, most likely the ipso-position, and the carbene ligand are coupled to form C2H2.
Co-reporter:Dr. Jilai Li;Dr. Xiao-Nan Wu;Dr. Maria Schlangen;Dr. Shaodong Zhou;Dr. Patricio González-Navarrete;Dr. Shiya Tang;Dr. Helmut Schwarz
Angewandte Chemie International Edition 2015 Volume 54( Issue 17) pp:5074-5078
Publication Date(Web):
DOI:10.1002/anie.201412441
Abstract
The reactivity of the heteronuclear oxide cluster [Ga2Mg2O5].+, bearing an unpaired electron at a bridging oxygen atom (Ob.−), towards methane and ethane has been studied using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Hydrogen-atom transfer (HAT) from both methane and ethane to the cluster ion is identified experimentally. The reaction mechanisms of these reactions are elucidated by state-of-the-art quantum chemical calculations. The roles of spin density and charge distributions in HAT processes, as revealed by theory, not only deepen our mechanistic understanding of CH bond activation but also provide important guidance for the rational design of catalysts by pointing to the particular role of doping effects.
Co-reporter:Dr. Jilai Li;Dr. Xiao-Nan Wu;Dr. Shaodong Zhou;Dr. Shiya Tang;Dr. Maria Schlangen;Dr. Helmut Schwarz
Angewandte Chemie International Edition 2015 Volume 54( Issue 42) pp:12298-12302
Publication Date(Web):
DOI:10.1002/anie.201503763
Abstract
The thermal reactions of the heteronuclear oxide cluster [Ga2MgO4].+ with methane and water have been studied using state-of-the-art gas-phase experiments in conjunction with quantum-chemical calculations. The significant reactivity differences, favoring activation of the strong OH bond, can be ascribed to a proton-coupled electron transfer (PCET) mechanism operative in the activation of water. This study deepens our mechanistic understanding on how inert RH bonds are cleaved by metal oxides.
Co-reporter:Dr. Jilai Li;Dr. Xiao-Nan Wu;Dr. Shaodong Zhou;Dr. Shiya Tang;Dr. Maria Schlangen;Dr. Helmut Schwarz
Angewandte Chemie International Edition 2015 Volume 54( Issue 42) pp:
Publication Date(Web):
DOI:10.1002/anie.201584261
Co-reporter:Xiao-Nan Wu, Hai-Tao Zhao, Jilai Li, Maria Schlangen and Helmut Schwarz
Physical Chemistry Chemical Physics 2014 vol. 16(Issue 48) pp:26617-26623
Publication Date(Web):12 Sep 2014
DOI:10.1039/C4CP02139H
The thermal reactions of [Zn(OH)]+ with C3H8 have been studied by means of gas-phase experiments and computational investigation. Two types of C–H bond activation are observed in the experiment, and pertinent mechanistic features include inter alia: (i) the metal center of [Zn(OH)]+ serves as active site in the hydride transfer to generate [i-C3H7]+ as major product, (ii) generally, a high regioselectivity is accompanied by remarkable chemoselectivity: for example, the activation of a methyl C–H bond results mainly in the formation of water and [Zn(C3,H7)]+. According to computational work, this ionic product corresponds to [HZn(CH3CHCH2)]+. Attack of the zinc center at a secondary C–H bond leads preferentially to hydride transfer, thus giving rise to the generation of [i-C3H7]+; (iii) upon oxidative dehydrogenation (ODH), liberation of CH3CH2CH2 occurs to produce [HZn(H2O)]+. Both, ODH as well as H2O loss proceed through the same intermediate which is characterized by the fact that a methylene hydrogen atom from the substrate is transferred to the zinc and one hydrogen atom from the methyl group to the OH group of [Zn(OH)]+. The combined experimental/computational gas-phase study of C–H bond activation by zinc hydroxide provides mechanistic insight into related zinc-catalyzed large-scale processes and identifies the crucial role that the Lewis-acid character of zinc plays.
Co-reporter:Nicole J. Rijs, Thomas Weiske, Maria Schlangen, Helmut Schwarz
Chemical Physics Letters 2014 Volume 608() pp:408-424
Publication Date(Web):21 July 2014
DOI:10.1016/j.cplett.2014.05.005
Co-reporter:Helmut Schwarz
Israel Journal of Chemistry 2014 Volume 54( Issue 10) pp:1413-1431
Publication Date(Web):
DOI:10.1002/ijch.201300134
Abstract
Recent progress in the gas-phase activation of methane is discussed. We demonstrate that cluster size, charge state, and ligands crucially affect both the reactivity and selectivity of metal-mediated bond activation processes. We outline the important role that relativistic effects and spin densities play and discuss the paradigm of two-state reactivity in thermal reactions. State-of-the-art mass-spectrometry based experiments, in conjunction with electronic structure calculations, permit identification of the elementary steps at a strictly molecular level and thus allow to uncover mechanistic features for four types of reactions: (i) metal-mediated dehydrogenation of methane, (ii) ligand-switch processes of the type ML + CH4 M(CH3) + HL, (iii) hydrogen-atom abstraction as the crucial step in the oxidative coupling of methane, and (iv) the mechanism of the challenging CH4CH3OH conversion.
Co-reporter:Helmut Schwarz
International Journal of Mass Spectrometry 2013 Volumes 354–355() pp:4
Publication Date(Web):15 November 2013
DOI:10.1016/j.ijms.2013.08.010
Co-reporter:Dr. Robert Kretschmer;Dr. Maria Schlangen;Dr. Helmut Schwarz
ChemPlusChem 2013 Volume 78( Issue 9) pp:
Publication Date(Web):
DOI:10.1002/cplu.201300256
Co-reporter:Dr. Robert Kretschmer;Dr. Zhe-Chen Wang;Dr. Maria Schlangen;Dr. Helmut Schwarz
Angewandte Chemie 2013 Volume 125( Issue 36) pp:
Publication Date(Web):
DOI:10.1002/ange.201306141
Co-reporter:Dr. Robert Kretschmer;Dr. Zhe-Chen Wang;Dr. Maria Schlangen;Dr. Helmut Schwarz
Angewandte Chemie 2013 Volume 125( Issue 36) pp:9691-9695
Publication Date(Web):
DOI:10.1002/ange.201302506
Co-reporter:Dr. Robert Kretschmer;Dr. Zhe-Chen Wang;Dr. Maria Schlangen;Dr. Helmut Schwarz
Angewandte Chemie International Edition 2013 Volume 52( Issue 36) pp:9513-9517
Publication Date(Web):
DOI:10.1002/anie.201302506
Co-reporter:Dr. Robert Kretschmer;Dr. Maria Schlangen;Dr. Helmut Schwarz
ChemPlusChem 2013 Volume 78( Issue 9) pp:952-958
Publication Date(Web):
DOI:10.1002/cplu.201300138
Abstract
With the exception of [Cu(OH)]+, the thermal reactions of the first-row transition-metal hydroxide cations, [Sc(OH)]+–[Zn(OH)]+, with ammonia have been studied by means of gas-phase experiments and by computational methods for the whole series. The primary reaction channels involve NH bond activation, forming [M(NH2)]+ concomitantly with the elimination of water, and adduct formation, leading to [M(OH)(NH3)]+. Furthermore, [Ti(OH)]+ and [V(OH)]+ react with ammonia under dehydrogenation conditions, leading to [M,O,N,H2]+ (M=Ti, V), and for [Ni(OH)]+ ligand exchange is observed. Computations of the main reaction channels have been performed for the [M(OH)]+/NH3 couples (M=Sc–Zn) to uncover the underlying reaction mechanism and periodic trends across the first row. For NH bond activation, σ-bond metathesis was found to be the underlying mechanism.
Co-reporter:Dr. Robert Kretschmer;Dr. Maria Schlangen;Dr. Helmut Schwarz
ChemPlusChem 2013 Volume 78( Issue 9) pp:
Publication Date(Web):
DOI:10.1002/cplu.201300255
Abstract
Invited for this month’s cover is the group of Prof. Helmut Schwarz from Technische Universität Berlin, Germany. For this special issue dedicated to the memory of Detlef Schröder, the cover picture shows the then young Detlef—a mastermind dedicated to the sciences. Read the full text of the article on page 952.
Co-reporter:Dr. Robert Kretschmer;Dr. Zhe-Chen Wang;Dr. Maria Schlangen;Dr. Helmut Schwarz
Angewandte Chemie International Edition 2013 Volume 52( Issue 36) pp:
Publication Date(Web):
DOI:10.1002/anie.201306141
Co-reporter:Marjan Firouzbakht, Maria Schlangen, Martin Kaupp, Helmut Schwarz
Journal of Catalysis (November 2016) Volume 343() pp:68-74
Publication Date(Web):1 November 2016
DOI:10.1016/j.jcat.2015.09.012
•The thermal reactions of [Y(C6D5)]+ with carbon dioxide have been investigated.•The process proceeds by migratory insertion under CC bond formation.•Direct O-atom transfer is not accessible from encounter complexes.•CO can be eliminated from intermediates, which are formed in the course of insertion.The thermal reactions of the per-deuterated yttrium phenyl cation with carbon dioxide have been investigated experimentally by using electrospray-ionization mass spectrometry and computationally by means of density functional theory. The process proceeds by migratory insertion under CC bond formation followed, to some extent, by decarbonylation. Labeling experiments with C18O2 confirm the origin of the oxygen incorporated in both productions. With regard to the mechanisms, the calculations reveal that the benzoate salt of yttrium corresponds to the most stable isomer. While extrusion of CO starting from this ion, or from two isomeric encounter complexes, is hampered by kinetic barriers, decarbonylation is accessible under thermal conditions from other intermediates which are generated after insertion of CO2 into the YC bond of [YC6D5]+.Download high-res image (40KB)Download full-size image
Co-reporter:Helmut Schwarz
Coordination Chemistry Reviews (1 March 2017) Volume 334() pp:
Publication Date(Web):1 March 2017
DOI:10.1016/j.ccr.2016.03.009
•Thermodynamic and kinetic constraints of metal-mediated oxygen-atom abstraction from CO2 will be discussed.•Mechanisms of hydride transfer in the conversion of carbon dioxide to formate are presented.•Coupling of carbon dioxide with methane: a real challenge to achieve – but how to succeed?In this invited review we address, from a mechanistic point of view, three fundamental reactions of carbon dioxide transformation in the gas phase: (i) its reduction to carbon monoxide via oxygen-atom transfer to a suitable oxygen acceptor, (ii) translocation of a hydride from metal hydrides to generate a formate ligand, and (iii) coupling processes with CO2 to make CC and CO bonds. Where appropriate, the findings are compared with related reactions in the condensed phase. The gas-phase studies described, in conjunction with computational work, permit to uncover numerous mechanistic aspects of elementary steps in the making and breaking of bonds, reactions which, by definition, are obscured in solution due to ill-defined effects of the environment.
Co-reporter:Xiao-Nan Wu, Hai-Tao Zhao, Jilai Li, Maria Schlangen and Helmut Schwarz
Physical Chemistry Chemical Physics 2014 - vol. 16(Issue 48) pp:NaN26623-26623
Publication Date(Web):2014/09/12
DOI:10.1039/C4CP02139H
The thermal reactions of [Zn(OH)]+ with C3H8 have been studied by means of gas-phase experiments and computational investigation. Two types of C–H bond activation are observed in the experiment, and pertinent mechanistic features include inter alia: (i) the metal center of [Zn(OH)]+ serves as active site in the hydride transfer to generate [i-C3H7]+ as major product, (ii) generally, a high regioselectivity is accompanied by remarkable chemoselectivity: for example, the activation of a methyl C–H bond results mainly in the formation of water and [Zn(C3,H7)]+. According to computational work, this ionic product corresponds to [HZn(CH3CHCH2)]+. Attack of the zinc center at a secondary C–H bond leads preferentially to hydride transfer, thus giving rise to the generation of [i-C3H7]+; (iii) upon oxidative dehydrogenation (ODH), liberation of CH3CH2CH2 occurs to produce [HZn(H2O)]+. Both, ODH as well as H2O loss proceed through the same intermediate which is characterized by the fact that a methylene hydrogen atom from the substrate is transferred to the zinc and one hydrogen atom from the methyl group to the OH group of [Zn(OH)]+. The combined experimental/computational gas-phase study of C–H bond activation by zinc hydroxide provides mechanistic insight into related zinc-catalyzed large-scale processes and identifies the crucial role that the Lewis-acid character of zinc plays.