Juergen Klankermayer

Find an error

Name: Jürgen Klankermayer
Organization: RWTH Aachen University , Germany
Department: Institut für Technische und Makromolekulare Chemie
Title: (PhD)
Co-reporter: Walter Leitner; Jürgen Klankermayer; Stefan Pischinger; Heinz Pitsch; Katharina Kohse-Höinghaus
Angewandte Chemie International Edition 2017 Volume 56(Issue 20) pp:5371-5371
Publication Date(Web):2017/05/08
DOI:10.1002/anie.201702122
Following the “Fuel Design Process” To arrive at molecular structures with promising qualities for advanced future fuels, the quest for efficient catalytic production pathways based on sustainable feedstocks has to be combined with a detailed knowledge of engine combustion and emission performance. Proceeding towards this goal in “reverse” mode from tailored fuel target molecules to promising production processes is exemplified in a Review by W. Leitner, J. Klankermayer, K. Kohse-Höinghaus et al. on page 5412 ff. for selected routes from biomass to biofuels.
Co-reporter: Walter Leitner; Jürgen Klankermayer; Stefan Pischinger; Heinz Pitsch; Katharina Kohse-Höinghaus
Angewandte Chemie International Edition 2017 Volume 56(Issue 20) pp:5412-5452
Publication Date(Web):2017/05/08
DOI:10.1002/anie.201607257
AbstractSustainably produced biofuels, especially when they are derived from lignocellulosic biomass, are being discussed intensively for future ground transportation. Traditionally, research activities focus on the synthesis process, while leaving their combustion properties to be evaluated by a different community. This Review adopts an integrative view of engine combustion and fuel synthesis, focusing on chemical aspects as the common denominator. It will be demonstrated that a fundamental understanding of the combustion process can be instrumental to derive design criteria for the molecular structure of fuel candidates, which can then be targets for the analysis of synthetic pathways and the development of catalytic production routes. With such an integrative approach to fuel design, it will be possible to improve systematically the entire system, spanning biomass feedstock, conversion process, fuel, engine, and pollutants with a view to improve the carbon footprint, increase efficiency, and reduce emissions.
Co-reporter:Benjamin G. Schieweck; Dr. Jürgen Klankermayer
Angewandte Chemie International Edition 2017 Volume 56(Issue 36) pp:10854-10857
Publication Date(Web):2017/08/28
DOI:10.1002/anie.201702905
AbstractHerein a non-precious transition-metal catalyst system for the selective synthesis of dialkoxymethane ethers from carbon dioxide and molecular hydrogen is presented. The development of a tailored catalyst system based on cobalt salts in combination with selected Triphos ligands and acidic co-catalysts enabled a synthetic pathway, avoiding the oxidation of methanol to attain the formaldehyde level of the central CH2 unit. This unprecedented productivity based on the molecular cobalt catalyst is the first example of a non-precious transition-metal system for this transformation utilizing renewable carbon dioxide sources.
Co-reporter: Walter Leitner; Jürgen Klankermayer; Stefan Pischinger; Heinz Pitsch; Katharina Kohse-Höinghaus
Angewandte Chemie 2017 Volume 129(Issue 20) pp:5500-5544
Publication Date(Web):2017/05/08
DOI:10.1002/ange.201607257
AbstractNachhaltig produzierte Biokraftstoffe, die auf Basis von Lignozellulose zugänglich sind, werden in Energieszenarien für Mobilität und Transport der Zukunft intensiv diskutiert. Traditionell konzentrieren sich die Forschungsaktivitäten in den Naturwissenschaften dabei auf den Syntheseprozess, während die anschließende Bewertung der Verbrennungseigenschaften anderen Forschungsgebieten überlassen wird. Dieser Aufsatz verfolgt mit der gemeinsamen Betrachtung der motorischen Verbrennung und der Kraftstoffsynthese einen integrativen Ansatz, bei dem die chemischen Aspekte im Vordergrund stehen. Dabei wird deutlich, dass das fundamentale Verständnis des Verbrennungsvorgangs maßgeblich dazu beitragen kann, Designkriterien für die Molekülstruktur möglicher Kraftstoffkandidaten abzuleiten, um so Ziele für die Analyse von Synthesewegen und die Entwicklung katalytischer Produktionswege zu definieren. Dieser integrative Ansatz des “Kraftstoffdesigns” umfasst die gesamte Kette der Energiekonversion ausgehend vom Rohstoff über Herstellungsprozess, Kraftstoff und Motor bis hin zur Schadstoffemission. Dies ermöglicht eine systematische Optimierung des Gesamtsystems mit dem Ziel, die Kohlenstoffbilanz zu verbessern, die Effizienz zu erhöhen und die Emissionen zu verringern.
Co-reporter: Walter Leitner; Jürgen Klankermayer; Stefan Pischinger; Heinz Pitsch; Katharina Kohse-Höinghaus
Angewandte Chemie 2017 Volume 129(Issue 20) pp:5457-5457
Publication Date(Web):2017/05/08
DOI:10.1002/ange.201702122
Auf dem Weg zum “Kraftstoff-Design-Prozess” Um bei vielversprechenden Molekülstrukturen für maßgeschneiderte Kraftstoffe der Zukunft zu landen, müssen nachhaltige Produktionswege nicht nur Rohstoffeigenschaften und möglichst einfache Umwandlungsschritte berücksichtigen, sondern sich auch auf fundiertes Wissen über motorische Verbrennung und Schadstoffausstoß stützen. Wie man dieses Ziel im “Rückwärtsgang” von molekularen Leitstrukturen zu erfolgreichen Produktionsprozessen erreichen kann, verdeutlicht der Aufsatz auf S. 5500 ff. von W. Leitner, J. Klankermayer, K. Kohse-Höinghaus et al.
Co-reporter:Dr. Kassem Beydoun;Katharina Thenert;Emilia S. Streng;Sra Brosinski;Dr. Walter Leitner;Dr. Jürgen Klankermayer
ChemCatChem 2016 Volume 8( Issue 1) pp:135-138
Publication Date(Web):
DOI:10.1002/cctc.201501116

Abstract

The synthesis of trimethylamine (TMA) through a multicomponent combination of ammonia with carbon dioxide and molecular hydrogen by using a homogeneous ruthenium catalyst was explored. The use of [Ru(triphos)(tmm)] [triphos: 1,1,1-tris(diphenylphosphinomethyl)ethane, tmm: trimethylene methane] together with aluminum trifluoromethanesulfonate as a co-catalyst resulted in high ammonia conversion and excellent selectivity for TMA in organic solvents. Aqueous solutions of ammonium chloride were methylated almost quantitatively to the corresponding hydrochloride salt (i.e., TMAHCl) in a biphasic solvent system by using the same Ru complex without the need for any co-catalyst.

Co-reporter:Dr. Jürgen Klankermayer;Sebastian Wesselbaum;Dr. Kassem Beydoun;Dr. Walter Leitner
Angewandte Chemie International Edition 2016 Volume 55( Issue 26) pp:
Publication Date(Web):
DOI:10.1002/anie.201604246
Co-reporter:Markus Meuresch;Stefan Westhues;Dr. Walter Leitner ;Dr. Jürgen Klankermayer
Angewandte Chemie 2016 Volume 128( Issue 4) pp:1414-1417
Publication Date(Web):
DOI:10.1002/ange.201509650

Abstract

The development of a tailored tridentate ligand enabled the synthesis of a molecular ruthenium-triphos catalyst, eliminating dimerization as the major deactivation pathway. The novel catalyst design showed strongly increased performance and facilitated the hydrogenation of highly challenging lactam substrates with unprecedented activity and selectivity.

Co-reporter:Markus Meuresch;Stefan Westhues;Dr. Walter Leitner ;Dr. Jürgen Klankermayer
Angewandte Chemie International Edition 2016 Volume 55( Issue 4) pp:1392-1395
Publication Date(Web):
DOI:10.1002/anie.201509650

Abstract

The development of a tailored tridentate ligand enabled the synthesis of a molecular ruthenium-triphos catalyst, eliminating dimerization as the major deactivation pathway. The novel catalyst design showed strongly increased performance and facilitated the hydrogenation of highly challenging lactam substrates with unprecedented activity and selectivity.

Co-reporter:Dr. Jürgen Klankermayer;Sebastian Wesselbaum;Dr. Kassem Beydoun;Dr. Walter Leitner
Angewandte Chemie 2016 Volume 128( Issue 26) pp:7416-7467
Publication Date(Web):
DOI:10.1002/ange.201507458

Abstract

Dieser Aufsatz diskutiert die Chancen und Herausforderungen für die Nutzung der Kombination aus Kohlendioxid und Wasserstoff als C1-Synthon in katalytischen Reaktionen und Prozessen. Die Transformationen werden anhand des Reduktionsgrades und der Bindungsknüpfung geordnet, wobei die chemische Wertschöpfungskette von großvolumigen Grundchemikalien bis hin zu komplexen Molekülen mit biologischer Wirkung abgedeckt wird. Die chemischen Transformationen erlauben zum einen die Speicherung und Nutzung von erneuerbaren Energien in stofflichen Produkten und bieten gleichzeitig Möglichkeiten für ressourcenschonende und umweltfreundliche Herstellungsprozesse. Interdisziplinäre Grundlagenforschung von Chemikern und Ingenieuren kann so zu nachhaltigen Technologien an der Schnittstelle von Energie und Chemie beitragen. Der Aufsatz lädt den Leser dazu ein, das “katalytische Schachbrett” der Nutzung von CO2 und H2 kennenzulernen und vielleicht selbst einige Partien darauf zu beginnen.

Co-reporter:Dr. Jürgen Klankermayer;Sebastian Wesselbaum;Dr. Kassem Beydoun;Dr. Walter Leitner
Angewandte Chemie International Edition 2016 Volume 55( Issue 26) pp:7296-7343
Publication Date(Web):
DOI:10.1002/anie.201507458

Abstract

The present Review highlights the challenges and opportunities when using the combination CO2/H2 as a C1 synthon in catalytic reactions and processes. The transformations are classified according to the reduction level and the bond-forming processes, covering the value chain from high volume basic chemicals to complex molecules, including biologically active substances. Whereas some of these concepts can facilitate the transition of the energy system by harvesting renewable energy into chemical products, others provide options to reduce the environmental impact of chemical production already in today's petrochemical-based industry. Interdisciplinary fundamental research from chemists and chemical engineers can make important contributions to sustainable development at the interface of the energetic and chemical value chain. The present Review invites the reader to enjoy this exciting area of “catalytic chess” and maybe even to start playing some games in her or his laboratory.

Co-reporter:Dr. Jürgen Klankermayer;Sebastian Wesselbaum;Dr. Kassem Beydoun;Dr. Walter Leitner
Angewandte Chemie 2016 Volume 128( Issue 26) pp:
Publication Date(Web):
DOI:10.1002/ange.201604246
Co-reporter:Sebastian Wesselbaum, Verena Moha, Markus Meuresch, Sandra Brosinski, Katharina M. Thenert, Jens Kothe, Thorsten vom Stein, Ulli Englert, Markus Hölscher, Jürgen Klankermayer and Walter Leitner  
Chemical Science 2015 vol. 6(Issue 1) pp:693-704
Publication Date(Web):27 Aug 2014
DOI:10.1039/C4SC02087A
The hydrogenation of CO2 to methanol can be achieved using a single molecular organometallic catalyst. Whereas homogeneous catalysts were previously believed to allow the hydrogenation only via formate esters as stable intermediates, the present mechanistic study demonstrates that the multistep transformation can occur directly on the Ru–Triphos (Triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane) centre. The cationic formate complex [(Triphos)Ru(η2-O2CH)(S)]+ (S = solvent) was identified as the key intermediate, leading to the synthesis of the analogous acetate complex as a robust and stable precursor for the catalytic transformation. A detailed mechanistic study using DFT calculations shows that a sequential series of hydride transfer and protonolysis steps can account for the transformation of CO2via formate/formic acid to hydroxymethanolate/formaldehyde and finally methanolate/methanol within the coordination sphere of a single Ru–Triphos-fragment. All experimental results of the systematic parameter optimisation are fully consistent with this mechanistic picture. Based on these findings, a biphasic system consisting of H2O and 2-MTHF was developed, in which the active cationic Ru-complex resides in the organic phase for recycling and methanol is extracted with the aqueous phase.
Co-reporter:Thorsten vomStein;Dr. Tim denHartog;Dr. Julien Buendia;Dr. Spas Stoychev;Jakob Mottweiler;Dr. Carsten Bolm;Dr. Jürgen Klankermayer;Dr. Walter Leitner
Angewandte Chemie International Edition 2015 Volume 54( Issue 20) pp:5859-5863
Publication Date(Web):
DOI:10.1002/anie.201410620

Abstract

Ruthenium–triphos complexes exhibited unprecedented catalytic activity and selectivity in the redox-neutral CC bond cleavage of the β-O-4 lignin linkage of 1,3-dilignol model compounds. A mechanistic pathway involving a dehydrogenation-initiated retro-aldol reaction for the CC bond cleavage was proposed in line with experimental data and DFT calculations.

Co-reporter:Thorsten vomStein;Dr. Tim denHartog;Dr. Julien Buendia;Dr. Spas Stoychev;Jakob Mottweiler;Dr. Carsten Bolm;Dr. Jürgen Klankermayer;Dr. Walter Leitner
Angewandte Chemie 2015 Volume 127( Issue 20) pp:5957-5961
Publication Date(Web):
DOI:10.1002/ange.201410620

Abstract

Ruthenium–triphos complexes exhibited unprecedented catalytic activity and selectivity in the redox-neutral CC bond cleavage of the β-O-4 lignin linkage of 1,3-dilignol model compounds. A mechanistic pathway involving a dehydrogenation-initiated retro-aldol reaction for the CC bond cleavage was proposed in line with experimental data and DFT calculations.

Co-reporter:Thorsten vom Stein ; Markus Meuresch ; Dominik Limper ; Marc Schmitz ; Markus Hölscher ; Jacorien Coetzee ; David J. Cole-Hamilton ; Jürgen Klankermayer ;Walter Leitner
Journal of the American Chemical Society 2014 Volume 136(Issue 38) pp:13217-13225
Publication Date(Web):September 10, 2014
DOI:10.1021/ja506023f
The complex [Ru(Triphos)(TMM)] (Triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane, TMM = trimethylene methane) provides an efficient catalytic system for the hydrogenation of a broad range of challenging functionalities encompassing carboxylic esters, amides, carboxylic acids, carbonates, and urea derivatives. The key control factor for this unique substrate scope results from selective activation to generate either the neutral species [Ru(Triphos)(Solvent)H2] or the cationic intermediate [Ru(Triphos)(Solvent)(H)(H2)]+ in the presence of an acid additive. Multinuclear NMR spectroscopic studies demonstrated together with DFT investigations that the neutral species generally provides lower energy pathways for the multistep reduction cascades comprising hydrogen transfer to C═O groups and C–O bond cleavage. Carboxylic esters, lactones, anhydrides, secondary amides, and carboxylic acids were hydrogenated in good to excellent yields under these conditions. The formation of the catalytically inactive complexes [Ru(Triphos)(CO)H2] and [Ru(Triphos)(μ-H)]2 was identified as major deactivation pathways. The former complex results from substrate-dependent decarbonylation and constitutes a major limitation for the substrate scope under the neutral conditions. The deactivation via the carbonyl complex can be suppressed by addition of catalytic amounts of acids comprising non-coordinating anions such as HNTf2 (bis(trifluoromethane)sulfonimide). Although the corresponding cationic cycle shows higher overall barriers of activation, it provides a powerful hydrogenation pathway at elevated temperatures, enabling the selective reduction of primary amides, carbonates, and ureas in high yields. Thus, the complex [Ru(Triphos)(TMM)] provides a unique platform for the rational selection of reaction conditions for the selective hydrogenation of challenging functional groups and opens novel synthetic pathways for the utilization of renewable carbon sources.
Co-reporter:Dr. Kassem Beydoun;Ghazi Ghattas;Katharina Thenert;Dr. Jürgen Klankermayer;Dr. Walter Leitner
Angewandte Chemie 2014 Volume 126( Issue 41) pp:11190-11194
Publication Date(Web):
DOI:10.1002/ange.201403711

Abstract

The use of the well-defined [Ru(triphos)(tmm)] catalyst, CO2 as C1 source, and H2 as reducing agent enabled the reductive methylation of isolated imines, as well as the direct coupling of amines with aldehydes and the subsequent reductive methylation of the in situ formed imines. The method, which afforded the corresponding N-methyl amines in very good to excellent yields, was also used for the preparation of the antifungal agent butenafine in one step with no apparent waste, thus increasing the atom efficiency of its synthesis.

Co-reporter:Dr. Kassem Beydoun;Ghazi Ghattas;Katharina Thenert;Dr. Jürgen Klankermayer;Dr. Walter Leitner
Angewandte Chemie International Edition 2014 Volume 53( Issue 41) pp:11010-11014
Publication Date(Web):
DOI:10.1002/anie.201403711

Abstract

The use of the well-defined [Ru(triphos)(tmm)] catalyst, CO2 as C1 source, and H2 as reducing agent enabled the reductive methylation of isolated imines, as well as the direct coupling of amines with aldehydes and the subsequent reductive methylation of the in situ formed imines. The method, which afforded the corresponding N-methyl amines in very good to excellent yields, was also used for the preparation of the antifungal agent butenafine in one step with no apparent waste, thus increasing the atom efficiency of its synthesis.

Co-reporter:Thomas G. Ostapowicz ; Carina Merkens ; Markus Hölscher ; Jürgen Klankermayer ;Walter Leitner
Journal of the American Chemical Society 2013 Volume 135(Issue 6) pp:2104-2107
Publication Date(Web):January 30, 2013
DOI:10.1021/ja3119477
The synthesis of a novel class of bifunctional ruthenium hydride complexes incorporating Lewis acidic BR2 moieties is reported. Determination of the molecular structures in the solid state and in solution provided evidence for tunable interaction between the two functionalities. Cooperative effects on the reactivity of the complexes were demonstrated including the activation of small Lewis basic molecules by reversible anchoring at the boron center.
Co-reporter:Thorsten vomStein;Tobias Weig;Carina Merkens; Jürgen Klankermayer; Walter Leitner
ChemCatChem 2013 Volume 5( Issue 2) pp:
Publication Date(Web):
DOI:10.1002/cctc.201390004
Co-reporter:Dr. Kassem Beydoun;Dipl.-Chem. Thorsten vomStein;Dr. Jürgen Klankermayer;Dr. Walter Leitner
Angewandte Chemie International Edition 2013 Volume 52( Issue 36) pp:9554-9557
Publication Date(Web):
DOI:10.1002/anie.201304656
Co-reporter:P. Philipp M. Schleker;Roman Honeker;Dr. Jürgen Klankermayer;Dr. Walter Leitner
ChemCatChem 2013 Volume 5( Issue 7) pp:1762-1764
Publication Date(Web):
DOI:10.1002/cctc.201200942
Co-reporter:Thorsten vomStein;Tobias Weig;Carina Merkens; Jürgen Klankermayer; Walter Leitner
ChemCatChem 2013 Volume 5( Issue 2) pp:439-441
Publication Date(Web):
DOI:10.1002/cctc.201200215
Co-reporter:Dr. Kassem Beydoun;Dipl.-Chem. Thorsten vomStein;Dr. Jürgen Klankermayer;Dr. Walter Leitner
Angewandte Chemie 2013 Volume 125( Issue 36) pp:9733-9736
Publication Date(Web):
DOI:10.1002/ange.201304656
Co-reporter:Ghazi Ghattas, Dianjun Chen, Fangfang Pan and Jürgen Klankermayer  
Dalton Transactions 2012 vol. 41(Issue 30) pp:9026-9028
Publication Date(Web):23 May 2012
DOI:10.1039/C2DT30536D
A camphor based chiral phosphonium hydrido borate zwitterion was synthesised and successfully applied in the enantioselective hydrogenation of imines with selectivities up to 76% ee. The high stability of the novel chiral FLP-system enables effective recycling of the metal-free catalyst.
Co-reporter:Sebastian Wesselbaum;Thorsten vomStein;Dr. Jürgen Klankermayer;Dr. Walter Leitner
Angewandte Chemie International Edition 2012 Volume 51( Issue 30) pp:7499-7502
Publication Date(Web):
DOI:10.1002/anie.201202320
Co-reporter:Dr. Dianjun Chen;Valeri Leich;Fangfang Pan;Dr. Jürgen Klankermayer
Chemistry - A European Journal 2012 Volume 18( Issue 17) pp:5184-5187
Publication Date(Web):
DOI:10.1002/chem.201200244
Co-reporter:Frank M. A. Geilen;Thorsten vomStein;Barthel Engendahl;Sonja Winterle;Dr. Marcel A. Liauw;Dr. Jürgen Klankermayer;Dr. Walter Leitner
Angewandte Chemie International Edition 2011 Volume 50( Issue 30) pp:6831-6834
Publication Date(Web):
DOI:10.1002/anie.201007582
Co-reporter:Dr. Qingxia Gong;Dr. Jürgen Klankermayer;Dr. Bernhard Blümich
Chemistry - A European Journal 2011 Volume 17( Issue 49) pp:13795-13799
Publication Date(Web):
DOI:10.1002/chem.201100783

Abstract

para-Hydrogen induced polarization (PHIP) NMR spectroscopy emerges as an efficient and robust method for on-line monitoring of gas-phase hydrogenation reactions. Here we report detailed investigations of supported ionic liquid phase (SILP) catalysts in a continuous gas-phase hydrogenation of propene with PHIP NMR spectroscopy. A relocation of the rhodium complex in the thin layer of ionic liquid in the SILP catalyst at the initial stage of the propene hydrogenation is demonstrated. PHIP NMR spectroscopy can provide profound insight into the evolution of SILP catalysts during hydrogenation reactions.

Co-reporter:Frank M. A. Geilen;Thorsten vomStein;Barthel Engendahl;Sonja Winterle;Dr. Marcel A. Liauw;Dr. Jürgen Klankermayer;Dr. Walter Leitner
Angewandte Chemie 2011 Volume 123( Issue 30) pp:6963-6966
Publication Date(Web):
DOI:10.1002/ange.201007582
Co-reporter:Dianjun Chen;Dr. Yutian Wang;Dr. Jürgen Klankermayer
Angewandte Chemie 2010 Volume 122( Issue 49) pp:9665-9668
Publication Date(Web):
DOI:10.1002/ange.201004525
Co-reporter:Dianjun Chen;Dr. Yutian Wang;Dr. Jürgen Klankermayer
Angewandte Chemie International Edition 2010 Volume 49( Issue 49) pp:9475-9478
Publication Date(Web):
DOI:10.1002/anie.201004525
Co-reporter:Dianjun Chen and Jürgen Klankermayer  
Chemical Communications 2008 (Issue 18) pp:2130-2131
Publication Date(Web):31 Mar 2008
DOI:10.1039/B801806E
Metal-free homogeneous catalysed hydrogenation of various imines was accomplished with tris(perfluorophenyl)borane under moderate reaction conditions.
Co-reporter:Dianjun Chen;Mike Schmitkamp;Giancarlo Franciò Dr.;Jürgen Klankermayer Dr.;Walter Leitner Dr.
Angewandte Chemie International Edition 2008 Volume 47( Issue 38) pp:7339-7341
Publication Date(Web):
DOI:10.1002/anie.200801995
Co-reporter:Dianjun Chen;Mike Schmitkamp;Giancarlo Franciò Dr.;Jürgen Klankermayer Dr.;Walter Leitner Dr.
Angewandte Chemie 2008 Volume 120( Issue 38) pp:7449-7451
Publication Date(Web):
DOI:10.1002/ange.200801995
Co-reporter:Jürgen Klankermayer, Ilya D. Gridnev and John M. Brown  
Chemical Communications 2007 (Issue 30) pp:3151-3153
Publication Date(Web):03 Jul 2007
DOI:10.1039/B705978G
The amplifying asymmetric autocatalysis discovered by Soai and co-workers is dependent on the unique steric properties of the isopropyl group.
Co-reporter:Dianjun Chen and Jürgen Klankermayer
Chemical Communications 2008(Issue 18) pp:NaN2131-2131
Publication Date(Web):2008/03/31
DOI:10.1039/B801806E
Metal-free homogeneous catalysed hydrogenation of various imines was accomplished with tris(perfluorophenyl)borane under moderate reaction conditions.
Co-reporter:Sebastian Wesselbaum, Verena Moha, Markus Meuresch, Sandra Brosinski, Katharina M. Thenert, Jens Kothe, Thorsten vom Stein, Ulli Englert, Markus Hölscher, Jürgen Klankermayer and Walter Leitner
Chemical Science (2010-Present) 2015 - vol. 6(Issue 1) pp:NaN704-704
Publication Date(Web):2014/08/27
DOI:10.1039/C4SC02087A
The hydrogenation of CO2 to methanol can be achieved using a single molecular organometallic catalyst. Whereas homogeneous catalysts were previously believed to allow the hydrogenation only via formate esters as stable intermediates, the present mechanistic study demonstrates that the multistep transformation can occur directly on the Ru–Triphos (Triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane) centre. The cationic formate complex [(Triphos)Ru(η2-O2CH)(S)]+ (S = solvent) was identified as the key intermediate, leading to the synthesis of the analogous acetate complex as a robust and stable precursor for the catalytic transformation. A detailed mechanistic study using DFT calculations shows that a sequential series of hydride transfer and protonolysis steps can account for the transformation of CO2via formate/formic acid to hydroxymethanolate/formaldehyde and finally methanolate/methanol within the coordination sphere of a single Ru–Triphos-fragment. All experimental results of the systematic parameter optimisation are fully consistent with this mechanistic picture. Based on these findings, a biphasic system consisting of H2O and 2-MTHF was developed, in which the active cationic Ru-complex resides in the organic phase for recycling and methanol is extracted with the aqueous phase.
Co-reporter:Jürgen Klankermayer, Ilya D. Gridnev and John M. Brown
Chemical Communications 2007(Issue 30) pp:NaN3153-3153
Publication Date(Web):2007/07/03
DOI:10.1039/B705978G
The amplifying asymmetric autocatalysis discovered by Soai and co-workers is dependent on the unique steric properties of the isopropyl group.
Co-reporter:Ghazi Ghattas, Dianjun Chen, Fangfang Pan and Jürgen Klankermayer
Dalton Transactions 2012 - vol. 41(Issue 30) pp:NaN9028-9028
Publication Date(Web):2012/05/23
DOI:10.1039/C2DT30536D
A camphor based chiral phosphonium hydrido borate zwitterion was synthesised and successfully applied in the enantioselective hydrogenation of imines with selectivities up to 76% ee. The high stability of the novel chiral FLP-system enables effective recycling of the metal-free catalyst.
BENZENEMETHANAMINE, ALPHA-METHYL-N-(2-METHYLPHENYL)-, REL-(-)- (9CI)
1H-Imidazolium,1-butyl-3-(4-sulfobutyl)-, inner salt
(-)-(1R,2S,4S)-bicycloheptane-2-carboxylic acid
1-(4-TERT-BUTYLPHENYL)-N-METHYL-N-(NAPHTHALEN-1-YLMETHYL)METHANAMINE
Tricyclo[3.3.1.13,7]decane, 1,1'-(1,1,2,2-tetramethyl-1,2-ethanediyl)bis-
Phosphonium, bis(hydroxymethyl)diphenyl-, chloride