Roger W. Alder

Find an error

Name:
Organization: University of Bristol , England
Department: School of Chemistry
Title: Professor(PhD)

TOPICS

Co-reporter:Roger W. Alder;Craig P. Butts;Richard B. Sessions
Chemical Science (2010-Present) 2017 vol. 8(Issue 9) pp:6389-6399
Publication Date(Web):2017/08/21
DOI:10.1039/C7SC01759F
Overall inversion in fused cyclohexane oligomers 2, 3, and 4 (all based on cis-decalin 1) occurs by a rolling process involving no more than two adjacent rings in twist-boat conformations at any time. These inverting rings move along the oligomer in processes that are precisely choreographed by the adjacent chairs. Actual inversion mechanisms can be stepwise [CC → TC → TT → C′T → C′C′], as for cis-decalin, but it is shown that a concerted alternative [CC → TC → C′T → C′C′] is enforced in 2. The all-cis,anti,cis-isomers of perhydrohelicenes 4 are based on the diamond lattice and have remarkably low strain energies. Helix inversion in 4 is compared with that in helicenes 5. For both, the intermediates and transition states have shapes broadly like kinked old-style telephone cables. In both cases barriers increase with the length of the system to eventually reach a plateau value of ca. 120 kJ mol−1 for 4, much lower than that for 5 (320–350 kJ mol−1). While rolling inversion only requires two adjacent rings in twist-boat conformations at any instant, inversion in propellane 6 requires all three rings be converted to twist-boats, and the S4 symmetric hydrocarbon 7 requires all four rings to be converted to twist-boats. As a consequence, 7 probably has the highest barrier of any non-oligomeric cis-decalin derived structure (87.3 kJ mol−1 at B3LYP/6-31G*).
Co-reporter:Roger W. Alder ; Jeremy N. Harvey ; Guy C. Lloyd-Jones ;Josep M. Oliva
Journal of the American Chemical Society 2010 Volume 132(Issue 24) pp:8325-8337
Publication Date(Web):May 28, 2010
DOI:10.1021/ja1008135
This paper uses DFT and G3(MP2) calculations to examine whether unbridged 10-membered rings can be made by π6 + π4 cycloadditions to (Z)- and (E)-hexatrienes, hexa-1,5-dien-3-ynes, (Z)-hexa-1,3-dien-5-ynes, hexa-1,2,3,5-tetraenes, and (Z)-hexa-3-ene-1,5-diynes. Cycloadditions to four 4π reactants, buta-1,3-diene, butenyne, butatriene, and butadiyne, are explored. Thirty different basic cycloadditions are identified, and all are shown to be exothermic according to G3(MP2) calculations; strain energies in the products are comparable with that of cyclodecane itself, despite the presence of trans-alkene, alkyne, allene, cumulene, and s-trans diene moieties. The major obstacles to the isolation of 6 + 4 cycloaddition products are competing π4 + π2 cycloadditions and, especially, rapid Cope rearrangement of the products, but, in many cases, the judicious introduction of substituents can overcome these problems so that practical syntheses should be possible. Reactions between (E)-hexa-1,3,5-triene and s-trans-buta-1,3-diene are shown to have substantially lower activation energies than those involving (Z)-hexa-1,3,5-triene reacting with either s-cis- or s-trans-buta-1,3-diene. Conformationally locked derivatives of s-cis,s-cis (E)-hexa-1,3,5-trienes can lead to derivatives of (Z,Z,E)-cyclodeca-1,3,7-triene that are stable to Cope rearrangement, and reactions should proceed at close to ambient temperatures with suitable activating groups. We predict that it should be possible to prepare suitably substituted derivatives of at least 11 more highly unsaturated ring systems: (5Z,7Z)-cyclodeca-1,2,5,7-tetraene, (1Z,3Z)-cyclodeca-1,3-dien-7-yne, (2Z,7E)-cyclodeca-1,2,3,7-tetraene, (Z)-cyclodeca-1,2,3-trien-7-yne, (4Z,8E)-cyclodeca-1,2,4,8-tetraene, (Z)-cyclodeca-1,2,4,5,7-pentaene, (Z)-cyclodeca-1,2,4-trien-8-yne, (1Z,7E)-cyclodeca-1,7-dien-3-yne, (R,S,E)-cyclodeca-1,2,4,5,8-pentaene, cyclodeca-1,2,4,5,8,9-hexaene, and (R,S)-cyclodeca-1,2,4,5-tetraen-8-yne. In three other cases, we predict that cycloaddition will be followed by unusual and intriguing rearrangements. Cycloadditions can be accelerated by the presence of electron-withdrawing groups in either the 6π or 4π reactants. Transannular cyclizations of some products may lead to interesting stereocontrolled routes to 6,6- and/or 5,7-bicyclic structures.
Co-reporter:Roger W. Alder, Leila Chaker and François P. V. Paolini  
Chemical Communications 2004 (Issue 19) pp:2172-2173
Publication Date(Web):20 Aug 2004
DOI:10.1039/B409112D
Bis(diethylamino)carbene is kinetically stable to dimerization in THF at ambient temperature; dimer formed during carbene generation arises from reaction of the carbene with the precursor formamidinium ion; this is probably the commonest route to tetraaminoethene dimers, and in a related case the intermediate protonated tetraaminoethene can be observed by NMR.
Co-reporter:Roger W. Alder Dr.;Michael E. Blake Dr.;Leila Chaker Dr.;Jeremy N. Harvey Dr.;François Paolini;Jan Schütz
Angewandte Chemie 2004 Volume 116(Issue 44) pp:
Publication Date(Web):29 SEP 2004
DOI:10.1002/ange.200400654

Bisher wurde kein eindeutiger Nachweis für eine einfache, nicht katalysierte Dimerisierung von Diaminocarbenen gefunden. Es ist somit an der Zeit zu hinterfragen, welche Faktoren die Thermodynamik dieser Reaktion steuern und welche Mechanismen für die beobachteten Dimerisierungen verantwortlich sind. In Übereinstimmung mit qualitativen experimentellen Beobachtungen ergab die Berechnung, dass die Dimerisierung von einfachen Fünf- und Sechsringdiaminocarbenen um 100 kJ mol−1 weniger begünstigt ist als die der acyclischen Pendants. Dieser große Unterschied kann halbquantitativ durch die Änderung von Bindungs- und Torsionswinkeln um die Carbenzentren herum erklärt werden. Carbene wie (Et2N)2C sind, in Einklang mit den berechneten Energiebarrieren, in THF bei 25 °C kinetisch stabil, aber sie dimerisieren schnell in Gegenwart des entsprechenden Formamidiniumions. Dieser protonenkatalysierte Prozess ist wahrscheinlich der häufigste Mechanismus der Dimerbildung. Er führt zur Bildung von C-protonierten Dimeren, was in geeigneten Fällen beobachtet werden kann. Es wird auch die Möglichkeit der durch Alkalimetalle geförderten Dimerisierung diskutiert; hierfür werden einige Belege vorgestellt.

Co-reporter:Roger W. Alder Dr.;Michael E. Blake Dr.;Leila Chaker Dr.;Jeremy N. Harvey Dr.;François Paolini;Jan Schütz
Angewandte Chemie International Edition 2004 Volume 43(Issue 44) pp:
Publication Date(Web):29 SEP 2004
DOI:10.1002/anie.200400654

No example of a simple uncatalyzed dimerization of a diaminocarbene has been clearly established, so it is timely to ask what factors control the thermodynamics of this reaction, and what mechanisms are responsible for the observed dimerizations? In agreement with qualitative experimental observations, the dimerizations of simple five- and six-membered-ring diaminocarbenes are calculated to be 100 kJ mol−1 less favorable than those of acyclic counterparts. This large difference is semiquantitatively accounted for by bond and torsional angle changes around the carbene centers. Carbenes such as (Et2N)2C are kinetically stable in THF at 25 °C in agreement with calculated energy barriers, but they rapidly dimerize in the presence of the corresponding formamidinium ion. This proton-catalyzed process is probably the most common mechanism for dimer formation, and involves formation of C-protonated dimers, which can be observed in suitable cases. The possibility of alkali-metal-promoted dimerization is raised, and circumstantial evidence for this is presented.

Co-reporter:Roger W. Alder ;David Read Dr.
Angewandte Chemie 2000 Volume 112(Issue 16) pp:
Publication Date(Web):11 AUG 2000
DOI:10.1002/1521-3757(20000818)112:16<3001::AID-ANGE3001>3.0.CO;2-6
Co-reporter:Dr. Roger W. Alder;Dr. Paul R. Allen;Dr. Martin Murray; A. Guy Orpen
Angewandte Chemie 1996 Volume 108(Issue 10) pp:
Publication Date(Web):31 JAN 2006
DOI:10.1002/ange.19961081026
2H-Pyran, 2-[(4-bromo-3-butynyl)oxy]tetrahydro-
Thiophene, tetrahydro-3,4-dimethoxy-, 1,1-dioxide, trans-
Fluorenyl, 9-(9H-fluoren-9-yl)-
4H-Inden-4-ylidene
2,5,8-Cyclononatriene-1,4,7-triylidene
Morpholine, 4,4'-(1,8-naphthalenediyl)bis-
1,6-Diazecine, decahydro-
1H-Perimidinium, 1,2,3-trimethyl-, iodide
1,3-Butadienylidene, 4-phenyl-
Borane, bromo-