Enrico Gratton,

Find an error

Name: Gratton,, Enrico
Organization: University of California, Irvine , USA
Department: Department of Biomedical Engineering
Title: Professor(PhD)
Co-reporter:F. PorcaroY. Miao, R. Kota, J. B. Haun, G. Polzonetti, C. Battocchio, E. Gratton
Langmuir 2016 Volume 32(Issue 50) pp:13409-13417
Publication Date(Web):November 29, 2016
DOI:10.1021/acs.langmuir.6b02545
In this work, we report the synthesis and biophysical studies carried out on a new kind of biocompatible and very stable gold nanoparticle (GNP) stabilized with glucose through a PEG linker (AuNP-PEG-Glu). The synthetic path was optimized to obtain nanoparticles of controlled sizes. ζ-potential and dynamic light scattering measurements allowed assessment of the nanodimension, dispersity, surface charge, and stability of our GNPs. Confocal microscopy demonstrated qualitatively that glucose molecules are successfully bonded to GNP surfaces. For our study, we selected nanoparticles with diameter in a range that maximizes the internalization efficiency in cells (40 nm). A detailed investigation about the biophysical proprieties of AuNP-PEG-Glu was carried out by means of fluorescence correlation spectroscopy (FCS) and orbital tracking techniques. This work gives new insights about the uptake mechanism of gold nanoparticles capped with glucose molecules.
Co-reporter:Belinda K. Wright, Laura M. Andrews, Julie Markham, Mark R. Jones, Chiara Stringari, Michelle A. Digman, Enrico Gratton
Biophysical Journal (3 July 2012) Volume 103(Issue 1) pp:
Publication Date(Web):3 July 2012
DOI:10.1016/j.bpj.2012.05.038
NADH is a naturally fluorescent metabolite associated with cellular respiration. Exploiting the different fluorescence lifetime of free and bound NADH has the potential to quantify the relative amount of bound and free NADH, enhancing understanding of cellular processes including apoptosis, cancer pathology, and enzyme kinetics. We use the phasor- fluorescence lifetime image microscopy approach to spatially map NADH in both the free and bound forms of live undifferentiated and differentiated myoblast cells. The phasor approach graphically depicts the change in lifetime at a pixel level without the requirement for fitting the decay. Comparison of the spatial distribution of NADH in the nucleus of cells induced to differentiate through serum starvation and undifferentiated cells show differing distributions of bound and free NADH. Undifferentiated cells displayed a short lifetime indicative of free NADH in the nucleus and a longer lifetime attributed to the presence of bound NADH outside of the nucleus. Differentiating cells displayed redistribution of free NADH with decreased relative concentration of free NADH within the nucleus whereas the majority of NADH was found in the cytoplasm.
Co-reporter:Carmine Di Rienzo, Francesco Cardarelli, Mariagrazia Di Luca, Fabio Beltram, Enrico Gratton
Biophysical Journal (23 August 2016) Volume 111(Issue 4) pp:
Publication Date(Web):23 August 2016
DOI:10.1016/j.bpj.2016.07.005
In a living cell, the movement of biomolecules is highly regulated by the cellular organization into subcompartments that impose barriers to diffusion, can locally break the spatial isotropy, and ultimately guide these molecules to their targets. Despite the pivotal role of these processes, experimental tools to fully probe the complex connectivity (and accessibility) of the cell interior with adequate spatiotemporal resolution are still lacking. Here, we show how the heterogeneity of molecular dynamics and the location of barriers to molecular motion can be mapped in live cells by exploiting a two-dimensional (2D) extension of the pair correlation function (pCF) analysis. Starting from a time series of images collected for the same field of view, the resulting 2D pCF is calculated in the proximity of each point for each time delay and allows us to probe the spatial distribution of the molecules that started from a given pixel. This 2D pCF yields an accurate description of the preferential diffusive routes. Furthermore, we combine this analysis with the image-derived mean-square displacement approach and gain information on the average nanoscopic molecular displacements in different directions. Through these quantities, we build a fluorescence-fluctuation-based diffusion tensor that contains information on speed and directionality of the local dynamical processes. Contrary to classical fluorescence correlation spectroscopy and related methods, this combined approach can distinguish between isotropic and anisotropic local diffusion. We argue that the measurement of this iMSD tensor will contribute to advance our understanding of the role played by the intracellular environment in the regulation of molecular diffusion at the nanoscale.
Co-reporter:Suman Ranjit, Luca Lanzano, Enrico Gratton
Biophysical Journal (16 December 2014) Volume 107(Issue 12) pp:
Publication Date(Web):16 December 2014
DOI:10.1016/j.bpj.2014.08.041
Diffusion of a fluorescent protein within a cell has been measured using either fluctuation-based techniques (fluorescence correlation spectroscopy (FCS) or raster-scan image correlation spectroscopy) or particle tracking. However, none of these methods enables us to measure the diffusion of the fluorescent particle at each pixel of the image. Measurement using conventional single-point FCS at every individual pixel results in continuous long exposure of the cell to the laser and eventual bleaching of the sample. To overcome this limitation, we have developed what we believe to be a new method of scanning with simultaneous construction of a fluorescent image of the cell. In this believed new method of modified raster scanning, as it acquires the image, the laser scans each individual line multiple times before moving to the next line. This continues until the entire area is scanned. This is different from the original raster-scan image correlation spectroscopy approach, where data are acquired by scanning each frame once and then scanning the image multiple times. The total time of data acquisition needed for this method is much shorter than the time required for traditional FCS analysis at each pixel. However, at a single pixel, the acquired intensity time sequence is short; requiring nonconventional analysis of the correlation function to extract information about the diffusion. These correlation data have been analyzed using the phasor approach, a fit-free method that was originally developed for analysis of FLIM images. Analysis using this method results in an estimation of the average diffusion coefficient of the fluorescent species at each pixel of an image, and thus, a detailed diffusion map of the cell can be created.
Co-reporter:Chi-Li Chiu, Michelle A. Digman, Enrico Gratton
Biophysical Journal (15 October 2013) Volume 105(Issue 8) pp:
Publication Date(Web):15 October 2013
DOI:10.1016/j.bpj.2013.07.057
Actin dynamics is important in determining cell shape, tension, and migration. Methods such as fluorescent speckle microscopy and spatial temporal image correlation spectroscopy have been used to capture high-resolution actin turnover dynamics within cells in two dimensions. However, these methods are not directly applicable in 3D due to lower resolution and poor contrast. Here, we propose to capture actin flow in 3D with high spatial-temporal resolution by combining nanoscale precise imaging by rapid beam oscillation and fluctuation spectroscopy techniques. To measure the actin flow along cell protrusions in cell expressing actin-eGFP cultured in a type I collagen matrix, the laser was orbited around the protrusion and its trajectory was modulated in a clover-shaped pattern perpendicularly to the protrusion. Orbits were also alternated at two positions closely spaced along the protrusion axis. The pair cross-correlation function was applied to the fluorescence fluctuation from these two positions to capture the flow of actin. Measurements done on nonmoving cellular protrusion tips showed no pair-correlation at two orbital positions indicating a lack of flow of F-actin bundles. However, in some protrusions, the pair-correlation approach revealed directional flow of F-actin bundles near the protrusion surface with flow rates in the range of ∼1 μm/min, comparable to results in two dimensions using fluorescent speckle microscopy. Furthermore, we found that the actin flow rate is related to the distance to the protrusion tip. We also observed collagen deformation by concomitantly detecting collagen fibers with reflectance detection during these actin motions. The implementation of the nanoscale precise imaging by rapid beam oscillation method with a cloverleaf-shaped trajectory in conjunction with the pair cross-correlation function method provides a quantitative way of capturing dynamic flows and organization of proteins during cell migration in 3D in conditions of poor contrast.
1-Hydroxy-2,5-dioxopyrrolidine-3-sulfonic acid
GANGLIOSIDE GM1, AMMONIUM SALT, BOVINE
3,5,8-Trioxa-4-phosphahexacos-17-en-1-aminium,4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxohexadecyl)oxy]methyl]-, inner salt,4-oxide, (17Z)-
3,5,9-Trioxa-4-phosphaheneicosan-1-aminium,4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxododecyl)oxy]-, inner salt, 4-oxide,(7R)-
1,2-dimyristoyl-sn-glycero-3-phospho-choline monohydrate
(R)-2,3-Bis(palmitoyloxy)propyl (2-(trimethylammonio)ethyl) phosphate
Dactinomycin
2-Propanol, 1-[(1-methylethyl)amino]-3-(1-naphthalenyloxy)-