Abstract
An elegant synergistic catalytic system comprising a ruthenium complex with a chiral Brønsted acid was developed for a four-component Mannich/cascade aza-Michael reaction. The ruthenium-associated ammonium ylides successfully trapped with in situ generated imines indicates a stepwise process of proton transfer in the ruthenium-catalyzed carbenoid N
H insertion reaction. The different decomposition abilities of various ruthenium complexes towards diazo compounds were well explained by the calculated thermodynamic data. The transformation features a mild, rapid, and efficient method for the synthesis of enantiomerically pure 1,3,4-tetrasubstituted tetrahydroquinolines bearing a quaternary stereogenic carbon center from simple starting precursors in moderate yields with high diastereo- and enantioselectivity.